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Abstract

A system using interaction of evanescent light wave with
particles in a liquid (such as ink) allows one to observe
accumulation and stability of such particles at and in the vicinity
of a surface. Particles can be moved either by electric field
between electrodes, or by charge injected into the liquid by charge
generator. Observation is sensitive only to particles within less
than 1 micron of the interface, so observation can be made with an
arbitrary thickness of fluid sample. This kind of system is ideal for
investigating device life limiting interaction between colorants and
substrates in displays. We show that adhesion to electrodes can
dominate motion of pigments in display applications.

Introduction

Electrophoretic motion of pigment (toner) particles due to
electric fields is utilized in printing [1,2] and in displays [3,4].
Interactions between pigment particles and bounding surfaces are
very important to lifetimes and performance of the devices.
Understanding surface-particle interactions is critical to improving
products based on electrophoresis. Until now it was not possible to
distinguish between particles in the bulk of the liquid and those in
the vicinity of a surface, either because of absorption of light in the
bulk, or because thickness offilms under observation is
comparable to depth of focus of imaging equipment which is
typically very expensive and of very limited field of view. For
purposes of investigations fluid containing the pigment particles is
typically held between electrodes making it not possible to
distinguish between effects of electric field and electrode injected
charge. Methods and equipment presented in this article provide
for simple and inexpensive equipment that solves these issues.

A new laser-based optical absorption method was developed
to observe particles within a narrow region adjacent to a substrate.
The light beam is coupled into the liquid through a prism at an
angle above the total internal reflection angle. This results in a
particle-light interaction region within the evanescent wave
penetration depth, which extends much less than a micrometer into
the liquid. Changes in particle concentration in that region are
observed as changes in reflected light intensity due to absorption
or scattering.

Since the light beam sees particles only in close proximity to
the liquid-electrode interface, it is possible to observe effects in a
thin film of liquid with a free surface. This in turn permits one to
inject charge into the system from an external device. Either
positive or negative charge can be injected with controlled current
magnitude. Migration and adhesion of particles to electrode
surfaces can be observed by evanescent wave absorption in liquid
layers as thin as a few micrometers.
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System optics

A simplified diagram of the optical system is shown in Figure
1. A laser beam is coupled into a sample at high angle of incidence
by a prism. In order to achieve total internal reflection at the
sample-substrate interface, refractive indices of the prism and
substrate need to be larger than that of the sample carrier fluid.
Laser light wavelength should be selected based on the sample
under study. If the solute absorbs light, then one may want to
select the wavelength to match the absorption peak. Alternatively
one may want to stay away from the absorption band and rely on
scattering only as sensing method. The latter may be applicable
when multiple species are mixed as solute and one wants to study
averaged behaviour; the former if one wants to select one species
over another or to maximize sensitivity for a single species. The
substrate is typically coated with a transparent conductor such as
indium tin oxide (ITO) to be able to apply electrical fields on the
sample fluid while simultaneously monitoring the intensity of the
reflected light beam.

Sample on a substrate
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Figure 2 shows details of the beam geometry at total internal
reflection (TIR) condition. If TIR is achieved, light penetrates into
the low index of refraction liquid as an evanescent wave [5] whose

VA

P
amplitude decays as € , where Z is the distance from the
sample-substrate interface and p is the penetration depth that
depends on the complementary angle of incidence A, prism angle
o, prism refractive index n, fluid refractive index n2 and
wavelength of light A. In terms of the geometry in Figure 2
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Note that there is no dependence on the substrate refractive index
n;, which only has to be larger than that of the fluid. However, a
difference between n; and n controls reflection at prism substrate
interface and thus can contribute to the signal to noise ratio of the
system.
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Figure 2. Details of beam geometry (stray reflections omitted)

Figure 3 shows dependence of penetration depth on incidence
angle for typical values of refractive indices, 60 degrees prism and
green light. Complementary incidence angles in the range of 20-30
degrees are readily achieved, so it is easy to attain sensitivity to
particles within 0.2 microns from the interface. In fact, the
effective sensitivity distance is at most half that value, as
experimental observables are proportional to beam intensity rather
than amplitude. For many pigment dispersions this method offers
sub-monolayer sensitivity.
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Figure 3. Penetration depth as function of complementary incidence
angle for typical indices of refraction, 60 degrees prism and green light.

Electrophoretic field

Particle concentration proximate to the transparent conductor
interface can be modulated by application of an electric field.
Two approaches were employed to generate electrophoretic
motion of the particles: 1) charge injection from external device
and 2) electric field application from a counter electrode. In the
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first method, net charge in the fluid creates a field that draws
particles to the grounded ITO electrode. Intrinsic chemical charge
is not essential, since charge is introduced into the liquid from an
external source.

In the second method, electric fields are applied by a
secondary metal electrode separated from the ITO-coated glass by
a thin Mylar spacer. Electrophoretic motion of chemically charged
colorant particles in the vicinity of the ITO electrode can be
monitored by the optical signal. Figure 4 is a photograph of the
apparatus showing the secondary electrode, fluid containment with
spacer, ITO-coated slide and refracting prism. Applied field
magnitude, direction and duration can be conveniently adjusted in
this configuration with a pulse generator and amplifier.

Figure 4. Evanescent wave apparatus for monitoring electrophoretic
motion of charged colorant particles in a dielectric fluid. Green diode laser
beam is incident from right. a) beam mirror, b) prism, c) fluid containment,
d) removable counter electrode

Experimental measurements

Pigment dispersions were prepared by bead milling magenta
pigment in a dielectric carrier fluid, producing particle
distributions with diameter centered around 250 nm. Dispersion
conductivity was controlled by the concentration of cationic
surfactant added to the solution, and pigment concentration was
adjusted by dilution with the dielectric carrier fluid. When using
external charge injection, a uniform fluid layer first was spread
over the surface of the ITO glass with a wire wound rod to produce
a film thickness of about 20 um. Reflectance of the laser beam
incident on the ITO-fluid interface was then measured while a
single charge impulse was applied to the upper surface of the fluid
layer.

Data from such a measurement are presented in Figure 5 for
two samples having conductivities of 4.2 and 230 pS/cm. A
negative charge impulse of 25 ms duration was applied during the
reflectance measurement. Electric field between the charge
injector and substrate electrode of 0.7 V/um was applied about a
second before and after the charge pulse. Prior to charging, light
undergoes almost total internal reflection at the ITO-fluid
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interface, and the normalized intensity is 1.0 for both samples.
The reflectance drops coincident with the charge impulse for both
samples and remains constant over the duration of the impulse.
However, several seconds after turning off the charge impulse, the
reflectance of the high conductivity sample has returned to its
initial level, whereas that of the low conductivity sample has
remained unchanged. Matrix charge in the high conductivity
sample neutralizes the adsorbed particle charge, eliminating the
electrostatic force holding the particles to the substrate. Discharge
occurs much more slowly in the 4.2 pS/cm sample, so pigment
particles remain bound to the substrate over the measurement
interval.

Magenta pigment compression in response to current flux

4 2 pSlam FE0 pSin == —Cunenl densily [uATum?] |
.40 210
. | 25ms excitalion pulse
120 4 / 130
z ;
= 100 | 150 O
E (] S
4 i 3
s It El
= 080 120 3
o
g i;l'.mm% 3
H
H o
£ 060 i o &
= n -
s : 2
0.40 || 60 §
n C
[
020 u 20
n
I
0.00 A - - - . - + - [
L& 0o 05 1.3 15 20 25 30 a5 40
Time [sec]

Figure 5. Reflectance from ITO-fluid interface subjected to 25 ms charge
impulse for two samples: a) 0=4.2 pS/cm and b) 0=230 pS/cm. Magenta
pigment concentration = 0.5 wt% and fluid film thickness equals 20 um for
both samples
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Figure 6. Reflectance and conductivity data from fluids excited by a bi-

polar field of 2 x 10° V/m and 1 s pulse half width. Magenta pigment

concentration = 0.5 wt% and electrode spacing was 13 and 25 um.

Introduction of a secondary electrode affords the flexibility of

applying a bi-polar square wave voltage. In this implementation,
effects of injected charge are primarily masked by electrostatic
fields. Temporal dependence of the optical signal sheds light on
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particle motion and field-induced removal of electrophoretically
deposited material. Data from a magenta pigment solution
sandwiched between electrodes spaced either 13 or 25 um apart
are presented in Fig. 6. Positively charged pigment particles are
attracted to the negative ITO electrode in the first 100 ms of the 1 s
duration initial pulse. The optical signal during the first pulse is
independent of spacing, suggesting that pigment motion in the
vicinity of the ITO electrode is comparable in the two samples and
that absorption saturates before all pigment is plated from solution.
Given the small amount of pigment in these measurement
volumes, saturation occurs within an average layer thickness less
than the average particle diameter.

Reversing polarity strips pigment from the ITO electrode. The
optical signal shows a delay of about 200 ms after switching
voltage polarity, indicating that adhesion of the film dominates
pigment release. Some pigment remains on the electrode as
evidenced by the reduced saturation level, and the thicker the
deposited layer the more pigment remains. Switching the voltage
polarity again supports the adhesion model hypothesis. In contrast
to the first pulse, where charged pigment particles in solution
respond rapidly to the applied field, there is a significant delay for
reflectivity to decrease. This delay is similar to that seen in the
second part of the waveform and most likely is due to adhesion of
pigments on the counter electrode.

CONCLUSIONS

A new measurement method was presented for characterizing
electrophoretic motion and interface adhesion of pigment particles
in a dielectric carrier. An ITO-coated glass slide serves dual
purpose as an electrode in an electrophoretic cell and an optical
element that exhibits total internal reflection. Evanescent wave
absorption at the interface between ITO and the working fluid
translates to a high sensitivity measurement of pigment particle
concentration within about 100 nm of the ITO surface.
Application of a voltage to the ITO electrode alters particle
concentration near the electrode, allowing one to study
electrophoretic motion and particle-interface adhesion.
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