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Abstract 
The development of inkjet printing processes is in great 

expansion for the fabrication of Microsystems thanks to less 
material waste and accurate dot placement. The quality of drop 
formation is known to depend on two main parameters: fluid 
viscosity and piezoactuator applied voltage. We are working with 
the thermotropic liquid crystal E7 which presents a nematic 
oriented phase for a temperature under 60°C and an isotropic 
phase above 60°C. Like other liquids, viscosity of thermotropic 
liquid crystals decreases with the temperature but presents a 
discontinuity at the phase transition, which can disturb the 
stability of drop ejection. Unfortunately, for the E7 liquid crystal, 
the piezoprinthead viscosity specifications (usually under 15cP) 
require a temperature increase close to the temperature transition. 
Thus, understanding the influence of phase transition on drop 
characteristics is crucial. Moreover, the applied voltage can be 
responsible for an electrical field perpendicular to the liquid 
movements, which can trouble the orientation of nematic phase 
molecules, change its apparent viscosity and alter the ejection 
process. In order to understand these phenomena, the influences of 
viscosity and applied voltage will be studied and discussed. An 
adjustment tool will be finally proposed to fit with experimental 
results and to reach finally stable formation of liquid crystal 
drops. 

Introduction 
Liquid crystals material exhibit particular phases of matter, 

called mesophases, between liquid and solid classical phases of 
conventional liquids. In those mesophases, liquid crystal (LC) 
inhabit an anisotropic oriented structure, less organized than in the 
solid state but still have an ability to flow like in its liquid phase. 
This anisotropy confers to them specific properties, as optical 
birefringence and high sensitivity to an applied electric field. The 
study of these properties has received a lot of attention in recent 
years to create, for instance, liquid crystal wavefront modulators 
[1] and adaptive lenses [2][3]. Other LC applications have been 
developed by microelectronic researchers such as tunable 
capacitors [4] or displays [5].  

LC are quite expensive materials, thus the integration process 
to microsystems has to be very efficient to limit waste of material. 
Inkjet printing technology, which is in great expansion nowadays 
in microelectronic fields [6], is a good solution of integration 
thanks to its very accurate non-contact deposition process of small 
amounts of material. This is the reason why we are interested in 
studying and understanding liquid crystal behavior during the drop 
formation process. 

The most commonly used inkjet printing technology is 
piezoelectric Drop-on-Demand (DOD) printheads. The quality of 
drop formation in those printheads is known to depend on two 
main parameters: fluid viscosity (depending on temperature) and 

driving voltage. Inkjet users have to study these parameters to 
control volume and velocity of droplets, and ensure an optimized 
and stabilized material deposition. 

Here, we are working with a well known thermotropic liquid 
crystal, called E7, discovered in 1974 by Raynes [5]. Thermotropic 
liquid crystals exhibit a phase transition from mesophases to liquid 
phase as temperature is changed. These liquids present complex 
rheological properties, owing to their more or less organized states. 
E7 presents only one LC phase, which is a nematic phase, where 
molecules are oriented in the same direction but have no positional 
organization. 

In this paper, we will first present XAAR piezoprintheads 
used, E7 liquid crystal properties and tools used to characterize 
rheological properties and drop formation process. Then 
temperature dependency of E7 viscosity in the nematic and the 
isotropic phase will be detailed. The study of its drop formation 
process under the influences of driving voltage and viscosity will 
be presented and discussions on these results will be proposed. 
Finally, we will show that understanding how inkjet parameters 
influence drop properties enables to have an optimised and 
stabilized ejection of liquid crystal drops. 

Experiments 
In order to understand the behavior of liquid crystal in inkjet 

printing technology, we have studied the drop formation process of 
a thermotropic liquid crystal in a XAAR318® printhead. These 
inkjet printheads are drop-on-demand printheads. They use the 
deformation of piezoelectric actuators to create a volume change 
in the channel, which generates a pressure wave that propagates 
across the liquid at a high shear rate. This acoustic pressure wave 
overcomes the viscous pressure loss in the small nozzle aperture 
and surface tension force of the meniscus so that a drop can be 
ejected from the nozzle. These multi-nozzle printheads can work 
in greyscale mode [7], deposition of variable size drops of liquid, 
from 6 to 42 pl, at a frequency comprised between 1 and 4 kHz. 
Here we have limited the observations to the 6pl drop formation. 
The viscosity of liquid to be ejected has to be in the range of 6-
15cP for a temperature lower than 65°C, and a surface tension 
from 20 to 40 mN/m.  

Considering these requirements, we have chosen to work with 
E7 from Merck, a four-component thermotropic liquid crystal 
mixture of cyanobiphenyls, and a cyanoterphenyl, containing 51% 
of 5CB, 25% of 7CB, 16% 80CB and 8% of 5CT (Figure 1). E7 
exhibits a nematic isotropic transition at TNI = 60°C, an adequate 
viscosity (measured with cone and plate Brookfield viscometer) 
and a surface tension of 33,9 mN/m at 25°C (measured with 
Wilhelmy Plate method on a tensiometer from Krüss). These 
properties enable us to study inkjet drop formation of E7 in its 
nematic and isotropic phases and during the phase transition. E7 
has a positive dielectric anisotropy, owing to a permanent dipole 
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along its molecular long axis. Thus the molecules will orient along 
the electric field applied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 - E7 chemical composition - a) 51% 4-n-pentyl-4’-cyanobiphenyl 
(5CB), b) 25% 4-n-heptyl-4’-cyanobiphenyl (7CB), c) 16% 4-n-octyloxy-4’-
cyanobiphenyl (80CB), d) 8% 4-n-pentyl-4’-cyanoterphenyl (5CT) 

The droplets formation has been visualized with a 
stroboscopic optical system composed of a CCD camera 
synchronized with a strobe LED system and the printhead. 
Velocity of ejected drops is measured, while the temperature of the 
liquid crystal and driving voltage is gradually modified to study 
their influence. To calculate the velocity, two pictures are taken at 
two different times; knowing the delay between both pictures and 
measuring the distance, velocity can be estimated. The frequency 
of ejection has been set up to 1000 Hz for all the tests presented 
after. 

Results and discussions 
First the viscosity variations of E7 versus temperature have 

been measured (Figure 2). The curve presents a discontinuity at 
the transition between nematic and isotropic phases. Indeed at 
TNI, the liquid crystal looses completely his organisation and 
molecules interactions are suddenly modified.  

Far from the transition, both phases are acting like other 
classical liquids: the viscosity decreases gradually when 
temperature increases. Then, E7 behaviour can be decomposed in 
two rheological models: one for its nematic phase and one for its 
isotropic phase. 

 
The viscosity dependence with temperature of both 

rheological models follows a classical Arrhenius law: 
 
-Nematic model:  
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Figure 2 – Viscosity versus temperature of E7 and rheological nematic and 
isotropic models 

 
Figure 3 –Drop velocity of E7 versus applied voltage for different 
temperatures (45°C - 50°C – 55°C: nematic, 60°C: Transition, 65°C: Isotropic) 
 
 

Afterwards, the influence of driving voltage applied to 
piezoelectric actuators on ejection of E7 droplets has been 
observed (Figure 3). Drop velocity increases linearly with applied 
voltage, with quite similar slopes, whatever the temperature is.   

E7 reacts like a classical ink in the printhead when driving 
voltage is increased [7], which was not obvious at first, because of 
LC high sensitivity to an applied electrical field. Indeed, Negita [8] 
demonstrates that when an electric field of a few kV/ mm is 
applied, perpendicularly to the flow, on 5CB liquid crystal in its 
nematic phase, an increase in its apparent viscosity is observed. 
Then, the liquid starts to act like a non-Newtonian liquid. This 
electro-rheological effect is due to a change of the director 
orientation and determined by the balance between the electric 
field and the shear rate of the flow influences exerted on the 
molecules orientation. Owing to this electro-rheological effect, we 
may see a non-linear effect on drop ejection velocity of E7, as 
5CB is its main component (51%). 

Nevertheless, drop formation process is not disturbed here for 
several reasons. In XAAR318® printheads, driving voltage is not 
applied directly through the liquid, but across piezoelectric walls. 
As the electrodes are not isolated from the liquid, we can assume 
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that local residual electric fields are seen by E7 in the channels. 
However, the electrical fields do not exceed 0,5kV/mm, which 
would exert only a small influence on E7 molecules orientation. 
Meanwhile, the piezoactuators create a high shear rate through the 
liquid that forces molecules to align with the flow whatever the 
electrical field is. 

Moreover, the ejection frequencies used with these printheads 
vary between 1 and 4 kHz, whereas E7 response time to an 
electrical field application is about 35ms [5]. This does not give 
enough time to the LC molecules to align with the field and affect 
its apparent viscosity. 

Thus, even if E7 might be sensitive to the electrical fields 
present around, its printing process is not affected. However, we 
can notice that at the transition temperature (60°C), the curve, 
shown figure 3, is lower than expected, which could be a 
consequence of the discontinuous jump of viscosity seen on figure 
2. 

 
Figure 4 –Drop velocity of E7 versus temperature for different applied 
voltages 

Then, we studied the influence of fluid temperature on drop 
velocity (Figure 4) for different driving voltages. As we could 
assume, drop velocity is rising gradually with the temperature, as 
the viscosity is falling [7]. Nevertheless, the curves present a 
discontinuous fall near the transition temperature. This proves that 
the sudden jump of viscosity is troubling the drop ejection.  

Besides, above a critical value, the shear rate applied on a 
liquid crystal in its isotropic phase near TNI is known to create 
nematic areas in the isotropic phase [8]. This phenomenon is then 
changing the rheological properties of the E7 flow. Consequently, 
it should influence the phase transition that should happen at a 
higher temperature. In the inkjet process, the E7 is subjected to a 
very high shear rate (105-106 s-1) across the nozzle aperture, but, 
apart from the measurements accuracy, the results show that this 
shear rate does not shift the transition temperature of E7 (figure 4). 
As the nozzle hole has a really small volume comparing to the 
volume of the channel (>0,2%), we can assume that most of the 
energy transferred to the droplet ejected is determined in the 
channel, where shear rate is lower than in the exit hole. High shear 
rate is exerted for less than ten microseconds on the liquid through 
the hole, which should not be sufficient to create nematic areas in 
the E7 flow. 

Far from TNI, E7 is acting like a classical liquid, so the two 
rheological models (1) and (2) can be used to illustrate the 
variation of drop velocity when viscosity is increased (Figure 5). 
In both phases, the drop velocity decreases now linearly with the 
viscosity models, which is due to the augmentation of energy lost 
by viscous frictions during the ejection. 

 
Figure 5 – Velocity versus viscosity of nematic model and isotropic model 

Regarding these results, a simple experimental relation 
between ejection velocity (v) and printing parameters (driving 
voltage (U) and viscosity (η)) can be expressed, for each 
rheological model: 

321 CCUCv +×+×= η                                        (3) 

With C1, C2 and C3 constant values depending on 
rheological properties of the liquid and printhead characteristics 

 
Owing to the Arrhenius law connecting temperature and 

viscosity for Newtonian liquids, this expression can also be 
written: 

3021 CeCUCv Tk
E

+×+×= η                              (4)  

With η0, E two constant values depending on the liquid, k the 
Boltzman constant and T in Kelvin degree. 

 
Then, experimental relations are expressed for both nematic 

and isotropic phases of E7: 
 
-Nematic model:  

8,1810.22,34,1 )15,273(
4060

5 −−= +− θeUv             (5) 
-Isotropic model: 

510.3,818,1 )15,273(
2530

3 −−= +− θeUv                  (6) 
 
These expressions are useful to stabilize drop ejection 

process. Indeed, drop velocity can be fixed to a desired value (v0), 
for instance to have no satellites, and equation (4) permits to 
calculate adequate driving voltage in function of E7 temperature in 
the printhead: 
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This enables to have an optimized drop formation whatever 
the temperature is. 

For E7, because of the viscous discontinuity, two relations are 
necessary to stabilize printing: relation (8) based on nematic 
rheological model (5) for temperature lower than TNI, and relation 
(9) based on isotropic rheological model (6) above: 

 
-Nematic model:  

7,1710.3,2 )15,273(
4060

5 += +− θeU                         (8) 
-Isotropic model:  

4,910.7 )15,273(
2530

3 += +− θeU                             (9) 

 
Figure 6 – Drop velocity versus temperature with (Aimed velocity 6m/s ) and 
without voltage adjustments 
 

Thanks to the application of equations (8) and (9) to adjust 
driving voltage, we managed to have a stabilized drop velocity 
around 6 m/s (± 5%), from 45°C to 65°C, while, without any 
adjustment, velocity of droplets varies between 3 and 8,5 m/s 
(Figure 6). However, we can notice that there are small variations 
around TNI, which shows that our models are not perfectly fitting 
the experience.  

Moreover, the reading of live temperature in the liquid 
manifold of the printhead would enable us to adjust 
instantaneously the driving voltage, and compensate temperature 
variations that could occur in XAAR318® printhead, because of 
the heating of piezoactuators And PCB cards during high 
frequency prints [10]. 

Conclusion 
After a presentation of particular temperature dependency of 

E7 viscosity in the nematic and the isotropic phases, the influences 
of inkjet printing parameters on drop formation have been detailed. 

Thus, it has been demonstrated that electro-rheological effect 
disturbing the viscosity of thermotropic liquid crystals does not 
have any effect on drop ejection in XAAR318® printhead. 
However, the nematic-isotropic transition leading to a 
discontinuous jump in viscosity variation was presented to be 
potentially troubling for ejection of droplets. Then simple 
experimental models of both nematic and isotropic phases have 
been expressed to simplify the rheological behaviour of E7 liquid 
crystal. This enables us to adjust the driving voltage applied in 
function of the liquid temperature in the printhead, in order to 
stabilize drop velocity. 

We can conclude that, in spite of complex rheological 
properties, the understanding of E7 behaviour in function of inkjet 
parameters influences enables us to have a stabilized and 
optimized drop formation of E7 with a piezoelectric DOD 
printhead. This makes E7 a perfect candidate to be accurately 
deposited in microelectronic systems with those printheads. 
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