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Abstract 
Environmental and consumable operating conditions have 

been observed to have significant impact on the color 
electrophotographic (EP) process. This paper presents the results 
of utilizing operating information to improve the sensor mapping 
which predicts tone reproduction on printing media based on 
measurements on substitute media in off-line calibration. In this 
research, time-series sensor data and color measurements have 
been collected from off-the-shelf color EP platform printers under 
a variety of operating conditions. The data analysis shows that the 
sensor mapping has distinctive behaviors under different levels of 
relative humidity and cartridge toner consumption. In addition, the 
sensor mapping has been found to be sensitive to tone level. A new 
prediction model is proposed to compensate for environmental and 
consumable disturbances and to capture tone-level-dependent 
characteristics. The experimental results show the proposed model 
is able to improve the prediction accuracy by 30% on average. 

Introduction 
A color electrophotography (EP) printing system is physically 

a binary process in nature. It produces all output colors by the 
combinations of certain primary colors such as cyan, magenta, 
yellow, and black (CMYK). To reproduce a primary color with a 
desired tone, an EP printing system first translates the desired 
continuous tone image into a half-toned image labeled with a half-
toned density. In order to represent colorimetric characterization of 
the EP printing system outputs, the colorimetric tone reproduction 
(CTR) measurement of the printed half-toned image is needed. 
Conventionally, the CTR can be determined by calculating the 
distance between the colorimetric measurement-of a printed color 
image and -of a reference color in a device-independent color 
space. For example, CIE L*a*b* is one of color spaces used for 
computing the CTR value. 

Performing a calibration process periodically is a prevailing 
approach to maintain consistency of primary color by restoring EP 
parameter to a desired state. Conceptually, the calibration process 
can be defined as a feedback control system which first prints 
particular patterns on the desired media based on the pre-
determined characterization function, and measure the print-outs to 
obtain CTR values. Then, the measured CTR values are applied as 
inputs of the inverted characterization function to obtain the 
control values required for calibration. The calibration described 
above is also categorized as “on-media” calibration.  

Because of the costs of consuming media and user 
involvement on measuring printouts, the practicality and 
automaticity of on-media calibration is limited [1]. Therefore, the 
alternative “off-media” calibration illustrated in Figure 1 is 

commonly utilized in off-the-shelf devices. Basically, in off-media 
calibration, the on-board densitometer is installed in the device to 
measure color patches printed, not on media usually used for 
printing, but on the transfer belt during calibration process. The 
accuracy of off-media calibration highly relies on the correlation 
to determine how measured density on transfer belt ( lS ) relates to 
actual printing density on media ( ′lCTR ). This sensor mapping 
function should be developed at factory during product 
development. In this research, we focused on improving the 
accuracy of the sensor mapping which predicts tone reproduction 
on printing media based on measurements on substitute media in 
off-media calibration 

 

 
Figure 1. Illustration of off-media calibration in an off-the-shelf device with on-
board measurement. 

Data Collection 
Since 2001, the data harvesting project was initiated at 

Purdue University to collect time-series sensor data and color 
measurements from several off-the-shelf color EP printers under a 
variety of operating conditions in the real-customer environment. 
The data harvesting procedure consists of three processes: 1) 
performing calibration, 2) retrieving data from printers, and 3) 
printing the test page after calibration. It took 30 minutes to finish 
a harvesting procedure. By the remote control, the procedure was 
triggered every six hours. 

The test page was designed by PostScript commands. 
Thirteen color patches with various tone level ranging from 0 to 
160, which are also used for printing on the transfer belt in off-
media calibration, are determined to represents the colorimetric 
tone reproduction. All test pages which bypass the calibration 
effect were printed to investigate the sensor mapping issue. The 
spectrophotometer (Xrite DTP70®) is used to measure color 
patches and obtain the CTR values (ΔE76 from paper white). 
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The data retrieval process also collected sensor data and 
printer operating conditions from the I/O interface of printers. The 
collected dataset contains five groups of information: 1) printer 
setting information, 2) densitometer readings ( lS ), 3) 
environmental conditions such as temperature and humidity, 4) 
consumable conditions such as cartridge toner consumption 
(CTC), and 5) other EP related parameters. 

 

Data Analysis 

Sensor Mapping Model 
A simple regression model is conventionally used to construct 

the sensor mapping between lS  and ′lCTR  in off-media 
calibration. Figure 2 displays an empirical example of the linear 
correlation between lS  and ′lCTR  (ΔE76 values from paper 
white). The data corresponding to a certain tone level are plotted 
as a data cluster. Several data clusters in X-Y dimension show a 
high correlation between lS  and ′lCTR . 

 
Figure 2. An example of sensor mapping between densitometer sensor 
readings and measured CTR values (ΔE76 values from paper white). 

Although the linear relationship between lS  and ′lCTR  is 
obvious, the prediction error is perceptible due to sensor mapping 
variation. Based on data analysis, the prediction error (root mean 
squared error, RMSE) of the existing method is greater than 2.5 
ΔE76 on average in CMYK. The error distinguishable by human 
eye, in fact, degrades the calibration accuracy and need to be 
controlled properly.  

Based on previous research works [2][3], the environmental 
and consumable conditions such as temperature, humidity, and 
cartridge toner consumption have been proved to impact the EP 
process. In the following sections, the impacts of the relative 
humidity and cartridge toner consumption on sensor mapping are 
reviewed. Variety of sensor mapping behaviors under different 
tone level is also investigated. 

 
 

Environmental Factors – Relative Humidity 
Figure 3 displays an example of the measured CTR values 

(ΔE76 from paper white) on media under different relative 
humidity (RH) levels (1871 data points in total). Each bar in the 

figure shows average CTR values of the collected data in certain 
RH level. The line segments on the top of each bar represent the 
confidence intervals surrounding the mean based on 95% 
confidence level. Obviously, we can observe the average CTR 
value is lower while RH is higher in this example. ANOVA 
analysis was performed and confirmed that RH is a significant 
factor to explain the measured CTR variation. This observation is 
consistent with results of the previous research works in [2]. 

 
Figure 3. Average CTR values (ΔE76 from paper white) under different RH 
conditions. The bars on the plot indicate mean values under different RH 
range. The mean CTR value under a certain RH range is significantly different 
from one under another RH range. 

Consumable Factors – Cartridge Toner 
Consumption (CTC) 

Cartridge toner consumption (CTC) is a measurement to 
represent the usage of the cartridge toner. It is defined as a 
percentage value. For example, 0% CTC specifies that the 
cartridge is brand new; 100% CTC represents that the toner in the 
cartridge is running out.  

 
Figure 4. Average CTR values under different CTC conditions (magenta, tone 
level = 28). The bars on the plot indicate mean CTR values under different 
CTC range. It shows the average CTR value in CTC < 20% group is relatively 
lower than it of other CTC groups. 

Following the same analysis method in the previous section, 
the collected data is categorized to different CTC groups, from low 
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to high (or from new to old cartridge). In order to emphasize the 
impact of CTC, here, only data under a certain RH level (15 ~ 25) 
is showed in Figure 4. We can see that the mean of CTR values in 
low CTC group is significantly lower than other CTC groups. This 
interesting pattern of CTR values can also be observed under 
different levels of CTC, and also different RH range. ANOVA 
analysis is conducted to show not only CTC but also the 
interaction between RH and CTC are significant factors on the 
measured CTR values, based on 95% confidence level. 

 

Tone-level-dependent Characteristics 
In order to investigate tone-level-dependent characteristics, 

we plot the data of the selected four different tone levels (4, 16, 28, 
and 64) to check the sensor mapping correlation (see Figure 5). 
Similar to Figure 2, the solid straight line indicates the regression 
line of the existing sensor mapping method. The dotted lines 
present the regression line of each data cluster. Obviously, the 
linear relationship between lS  and ′lCTR , in terms of regression 
slope, are not consistent among four tone levels.  

 
Figure 5. An example of sensor mapping between densitometer sensor 
readings and measured CTR values (ΔE76 values from paper white). The 
data with 4 tone levels are plotted. The dotted lines representing the 
regression lines of each data cluster are compared to the regression line by 
using all data. 

Figure 6 further compares regression coefficients of the 
selected 12 data clusters (12 different tone levels) with the 
regression coefficient applied by the existing method. Again, the 
straight line indicates the regression coefficient of the existing 
method. We can observe that the coefficient is higher (steeper) in 
middle tone range and smaller (flatter) in low and high tones. All 
of them are different from the constant regression coefficient of 
the existing method. Therefore, the existence of different tone-
level-dependent characteristic in the sensor mapping can be 
concluded. 

Methods and Results  

Methods 
Multiple linear regression method was applied to construct a 

new sensor mapping model which not only includes lS  but also 
considers RH, CTC and their interaction factors. Instead of 
developing a single model for all tone levels (the existing method), 

an individual model is developed for each pre-defined tone level to 
catch the unique tone-level-dependent characteristic. In order to 
evaluate the effectiveness of applying individual sensor mapping 
in each tone level, the tone-level-dependent model as Equation (1) 
is first compared with the existing method. Notice that this tone-
level-dependent model does not include RH, CTC, and their 
interaction factor in the model.  

 
Figure 6. 12 regression coefficients of the selected 12 data clusters (12 
different tone levels) are compared with the regression coefficient applied by 
the existing method. 

The second model includes RH, CTC, and their interaction 
factor as Equation (2). By comparing the first and second models, 
the effectiveness of including environmental and consumable 
conditions can be evaluated. In this research, only first-order 
regression is considered due to the memory constraint of the 
printer firmware. 

, 1 ,β β ε= + × +l i o l i iCTR S  (1) 
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By utilizing the collected data, the existing method and 

proposed models were compared with each other by the model 
performance measure. The root mean square error on cross 
validation (CVRMSE) defined as Equation (3) is a conventional 
performance measure to compare the prediction models. 
Essentially, the whole dataset is divided by k folds. In each of k 
iterations, one fold of data is used as validation set and rest of data 
is the training set. The RMSE of all predictions in each testing set 
is computed [4]. In this research, the 10-fold cross validation 
which is commonly used in literatures was considered. 
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Results 
Totally, 1871 data points are used to evaluate the existing 

method and proposed models. Table 1 shows the average 
CVRMSE across all tone levels of the existing method and 
proposed models. The parentheses denote the percentage 
improvement of the proposed models compared with the existing 
method. Obviously, the existing method has largest CVRMSE 
representing the worst case. The experimental result of the 1st tone-
level-dependent model shows significant improvement on reducing 
the CVRMSE. The paired T-test comparing the existing method 
and the tone-level-dependent model on each tone level also 
confirm this improvement (95% confidence level). It implies that 
the individual model of each tone level is able to catch the tone-
level-dependent characteristic and improve the sensor mapping.  

Table 1: Root mean square error on cross validation (CVRMSE) 
comparison of sensor mapping models 

Model 
CVRMSE (ΔE76) 

Cyan Magenta Yellow Black 

Existing Method  1.968 2.184 2.675 3.476 

1st Tone-level-dependent Model 
1.327 

(32.6%) 
1.826 

(16.4%) 
2.194 

(18.0%)
2.155 

(38.0%)

2nd Tone-level-dependent Model 
with RH and CTC Factors 

1.180 
(40.1%) 

1.724 
(21.1%) 

2.105 
(21.3%)

2.039 
(41.3%)

 
The 2nd tone-level-dependent model including the 

environmental and consumable conditions (RH, CTC, and their 
interaction) is further compared to the existing method. The result 
shows that adding RH, CTC, and their interaction factors can help 
on further explaining the variations and improve the prediction, 
except yellow color. Again, the paired T-test was conducted to 
confirm this result based on 95% confidence level. On average, 
around 30% CVRMSE across CMYK can be reduced by the 
proposed new model comparing with the existing method using in 
off-media calibration. 

 
Figure 7. The root mean square error on cross validation (CVRMSE) of 
sensor mapping models are compared in each tone level. 

Figure 7 illustrates the prediction improvement for cyan as an 
example. The solid circles denote the CVRMSE of the existing 
method across 12 tone levels. The triangles indicate the 
performance of the model which considers tone-level-dependent 
characteristics. The 1st tone-dependent model is able to reduce the 
sensor mapping error especially in low and high tone levels. The 
square symbols represent the results of the 2nd model which 
considers not only tone-level-dependent characteristics, but also 
RH and CTC factors. The prediction accuracy of the tone-level-
dependent model with RH and CTC factors is improved by 40% 
compared with the existing model in this case. 

Conclusion 
A more accurate sensor mapping model was proposed to 

improve the prediction accuracy which is important for off-media 
calibration on the color EP printer. Based on the data analysis, the 
relative humidity (RH) and cartridge tone consumption (CTC) 
conditions have significant impacts on the sensor mapping 
between color tone reproduction (CTR) and on-board densitometer 
readings ( lS ). Besides, the tone-level-dependent characteristic 
was observed to violate the assumption of the existing method 
assuming the constant mapping across tone levels. We proposed a 
new model to compensate for environmental and consumable 
disturbances and to capture tone-level-dependent characteristics. 
To verify the validity of the proposed approach, the prediction 
models are compared by using collected data. CVRMSE is used to 
investigate the model accuracy. The results show that the proposed 
model outperforms the existing method in terms of lower 
prediction error, and is able to reduce 30% of sensor mapping error 
on average. 
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