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Abstract
The digital color printing process can be described by the

color reproduction characteristics (CRC) function that maps the
input color to the output color. The CRC map is high dimen-
sional in that there are potentially high number of output colors
that a digital color printing process can reproduced. To main-
tain color consistency, it is desirable to have the CRC to match
the desired CRC map at all times. In this paper, we first propose
an effective sparse sensing approach known as time-sequential
sampling to retrieve the time-varying CRC using small number
of color samples at each print cycle. The availability of this in-
formation enables formulation of a 2-STAGE process level control
system: STAGE-I is a curve fitting robust control that makes best
use of the xerographic actuators and STAGE-II is a image feedfor-
ward compensation scheme. The key contribution of this paper is
in proposing direct CRC control(full closed loop) for maintaining
color consistency, as opposed to stabilizing the TRC of all the pri-
mary color separations (i.e. Cyan, Magenta, Yellow and Black) in
previous works. Effective CRC stabilization is demonstrated us-
ing the proposed approach while requiring small number of color
samples.

Introduction
An important performance criterion in digital xerographic

printing is that any desired colors in the desired customer im-
age(s) are faithfully reproduced at all times. Achieving good color
consistency is difficult because the marking process is subject to
many disturbances including temperature, humidity, material age
and variations, etc. These factors contribute to prints that look
different from one print to the next and from the desired customer
image. In this paper we propose a direct color control approach to
maintain color consistency of xerographic printing process. No-
tice that, unlike the control objective for most processes which is
to control or regulate the output of the process, the color control
problem consists of maintaining the process itself to be constant
and stable. The difference is because every customer image to be
printed can contain many and any possible colors which the xe-
rographic printer must reproduce correctly all at once. Moreover,
xerographic printers are often used in an on-demand manner in
which consecutive customer images are different.

By ignoring the spatial dimension (such as lines and textures)
of print quality for the moment and focusing on the issue of con-
sistent color reproduction only, a color xerographic printer can be
represented by the color reproduction characteristics(CRC) func-
tion

CRC(t) : C → C ,xdesired �→ yprinted (1)

where C is any consistent 3-dimensional colorspaces e.g. CIE
L∗a∗b∗, CMY, etc. An ideal printer is the one in which the CRC
matched the desired CRC map. In order to motivate the need for

direct CRC control for maintaining color consistency, a brief de-
scription of the digital xerographic printer is in order. A digital xe-
rographic color printer generates colors by printing and overlay-
ing the Cyan, Magenta, Yellow and blacK (CMYK) separations.
The printing of each color separation is characterized by the tone
reproduction curve (TRC), T RC : T → T , τdesired �→ τprinted ,
where the tone, τ of the separation is the solidness of the primary
toner color. Hence, the control problem can be formulated for the
printing of each color separation. In this case, the control objec-
tive is to maintain and stabilize the tone reproduction curve (TRC)
for each separation. However in this approach, the output colors
are consistent only if the manner in which the primaries are com-
bined is stable and constant i.e. there is no disturbances in the
color mixing process. The color mixing is a complex process that
is dictated by possibility of mis-registration of the different pri-
mary layers and disturbances in the color fusing process(typically
through heating). Therefore, variations of colors can occur de-
spite having all the primary TRCs stabilized. Hence, direct CRC
control that enable full feedback color control system will likely
be more effective.

However, the color control formulation poses significant
problems for sensing and control. The color print sensing involves
multi-dimensional time-varying spatial signal (1 temporal dimen-
sion and 3 spatial/color dimensions) using only small number of n
color samples. In this paper, this sensing issue is addressed using
time-sequential sampling as reported previously in [1]. The color
print control involves control of potentially high number of repro-
ducible colors using limited actuation authorities. In this paper,
a 2-STAGE process level control is used to maintain color con-
sistency. STAGE-I control makes use of the limited xerographic
actuators to stabilize the print process in a least squares sense.
Residual variations can then be compensated using STAGE-II by
continuously updating a software profile in the image processing
process.

Time-Varying CRC
The time-varying CRC map given in (1) is potentially infi-

nite dimensional because ideally any specified colors can be re-
produced. This map is made up of three main processes : image
processing (software), xerographic marking (hardware) and hu-
man perception (psychophysics). Hence,

CRC(t) := fpercept︸ ︷︷ ︸
human

◦ fcomb ◦ fmark︸ ︷︷ ︸
printer

◦ fhtone ◦ fsep︸ ︷︷ ︸
image processing

(2)

where fsep separates the image into primary color planes1, fhtone
performs half-toning on each color separations, fmark prints these

1The separation process is typically achieved by using the inverse map
of the actual printing process. To improve the print quality, in current
printing system this inverse map is periodically updated through the de-
vice characterization methods i.e. the ICC profile [2].
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half-tones separations, fcomb forms a composite image from the
printer separations, and fpercept models the human color percep-
tion.

In both sensing and control for maintaining color consis-
tency, it is convenient to take the input colorspace as the CMY
colorspace (i.e. taking fsep as an identity map) and the output
colorspace as the CIE L∗a∗b∗ colorspace. The CMY colorspace
is used as the input colorspace because it is the colorspace where
colors are specified in typical digital color printers(corresponding
to C,M,Y,K print engines). The CIE L∗a∗b∗ colorspace is used as
the output colorspace because it is a perceptually uniform device-
independent colorspace that enables meaningful formulation of
print quality requirements. Henceforth, CRC(t) is defined with
input CMY colorspace(denoted by CCMY) and output CIE L∗a∗b∗
colorspace(denoted by CL∗a∗b∗ ), unless stated otherwise.

Uniformly discretizing the CMY colorspace domain, typi-
cally given by CCMY = [0,1)3 ⊂ ℜ3, by M1, M2 and M3 points
in each of the C, M, Y coordinates respectively, the CRC can
be adequately approximated by its response at a finite number of
Mt = M1M2M3 color combinations. Thus, the xerographic color
control process at time t = kT ∈ℜ+ where T is the inter-sampling
time can be represented by:

CRC(k)=
[
L∗

1(k), . . . ,L
∗
Mt

(k),a∗1(k), . . . ,a
∗
Mt

(k),b∗1(k), . . . ,b
∗
Mt

(k)
]T

(3)

Note that CRC(k) ∈ℜ3Mt . The nominal CRC is denoted here by
CRC∗ ∈ℜ3Mt .

Similar to the case of the TRC [3], in the presence of xe-
rographic control inputs and disturbances, the possibly nonlinear
CRC, can be represented by the static, linear time varying, uncer-
tain model as follows:

CRC(k) = φ̂(I+Δ(k)Wu)ū(k)+CRC∗ + d̄(k) (4)

where u(k) ∈ ℜ3m(corresponding to the C, M, Y print engines
with m actuators each) denotes the xerographic actuators of the
CMY print engines, CRC∗ ∈ ℜ3Mt is the nominal CRC and
d̄(k) ∈ ℜ3Mt denotes a slowly time varying disturbance. Also,
ū(k) := u(k)− uo, where uo is the nominal control input. φ̂ ∈
ℜ3Mt×3m is the nominal sensitivity function, Δ(k) ∈ ℜ3m×3m is
the multiplicative uncertainty, Wu ∈ ℜ3m×3m is the matrix of
given uncertainty weights.

Sensing the Time-Varying CRC
The goal of the sensing system is given as follows

Sensing Goal: Sense using n ∈ Z + color samples at each print
cycle, k such that we:

(i) achieve maximum sampling efficiency, that is to maximize
the inter-sampling time, T ∈ℜ+.

(ii) enable high fidelity recovery of the time-varying CRC at
each print cycle, k.

The easiest way to achieve these objectives is to sample all
the Mt (i.e. take n = Mt ) colors at each print cycle and ensure that
it fulfills both the temporal and spatial Nyquist conditions. We
called this as the full-sampling approach. However, this is not a
feasible as it requires extensive sensor’s hardware and other sens-
ing resources. To restrict having only n small number of color

samples to achieve the aforesaid objectives brings forward ques-
tions on which color samples and when these samples should be
taken. These issues are resolved by a design approach for time-
sequential sampling called the T S(n) sampling[1, 4].

T S(n) sampling of the CRC amounts to printing different
n small number of color test patches(specified by different val-
ues setting for the C,M,Y input tones) and measuring these sam-
ples on paper at different print cycles. The sequence of which
and when the n different samples are taken is given by the de-
signed T S(n) sampling sequence, α(k). As the T S(n) sampling
design procedure is fairly involved, it is not possible to describe it
here. For an example and further details refer to [1, 4]. The time-
varying CRC can then be recovered from the time-sequentially
sensed signal through a reconstruction process via a periodic
Kalman filter[5]. The output of the periodic Kalman filter gives an
estimate of the disturbances. At nominal and for known control
inputs it is possible to estimate the time-varying CRC by equation
(4).

The benefits of the T S(n) sampling are as follows:

1. The sampling strategy even with n = 1 has been shown to
perform as well as if we have full measurement of the CRC.

2. The sampling strategy with n = 1 achieves 40% to 50% sav-
ings in the required number of samples without any penalty
in reconstruction performance compared to full sampling
approach.

3. The design can be extended to any n > 1 number of color
samples at each sampling instance. Increasing the number
of samples, n, increases the inter-sampling time. Hence, we
can always fulfill the print cycle duration by proper selection
of n.

Stabilization of the CRC
The goal of the xerographic color consistency control system

is to ensure that the CRC map is as close to the nominal map as
possible at all times i.e.
Control Goal: Match the desired nominal CRC, CRC∗ at each
input colors, xi ∈ CCMY, i = 1,2, . . . ,Mt, as k → ∞

CRC(k)[xi] → CRC∗[xi] (5)
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Figure 1. Proposed color consistency control strategy

This control goal is realized with a two-stage control strategy
as shown in Figure 1. An inner control loop (STAGE-I) utilizes the
xerographic actuators, fcomb ◦ fmark to regulate the nominal print
behavior. Since there are fewer xerographic actuators than the
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number of colors to be controlled, it is typically not possible for
(5) to hold for all the colors in the presence of disturbances. In
this paper a robust curve-fitting approach is proposed to minimize
the 2-norm error of the CRC over the entire color range.

While we expect that STAGE-I control improves the color
consistency subject to the presence of disturbances, the small
number of xerographic actuators does not completely eliminate
the CRC deviations from the desired CRC. By preserving the
CRC range with STAGE-I control (in addition to maintaining the
CRC to be relatively stable), we can introduce a pre-filter compen-
sation (STAGE-II) that makes use of the image processing process
to compensate for the residual CRC variations. In both STAGE-I
and STAGE-II control, full feedback information (i.e. the time-
varying CRC map) is available through the proposed sensing ap-
proach using time-sequential sampling strategy.

STAGE-I Control
Consider the linear uncertain model given in (4), with Δ(k)

and d̄(k) being effectively unknown. Let Ū(z) = K(z)Ē(z) be
some linear feedback to be specified, where ē(k) = CRC(k)−
CRC∗ ∈ ℜ3Mt . Defining the error weighings W̄e ∈ ℜ3Mt×3Mt to
specify the relative importance of the CRC error at different col-
ors. The closed-loop system can be expressed as a linear frac-
tional transformation (LFT) given as follows:⎛

⎝ w
W̄eē

ē

⎞
⎠ =

⎛
⎝ 0 0 W̄u

W̄eφ̂ W̄e W̄eφ̂
φ̂ I φ̂

⎞
⎠

︸ ︷︷ ︸
P

⎛
⎝ v

d̄
ū

⎞
⎠ (6)

with feedback connections v(k) = Δ(k)w(k) and U(z) =
K(z)Ē(z). Due to the static nature of the xerographic printing
process, and the disturbances are generally slowly varying, the
performance optimization is restricted to the steady-state case.
Hence, since W̄eē∞ is linear with respect to d̄∞

e , there exists some
matrix, F(P,Δ∞,K∞) such that W̄eē∞ = F(P,Δ∞,K∞)d̄∞

e . The
goal here is therefore to find a controller K(z) such that for the
worst case performance and for as large class of uncertainty Δ(·)
as possible ‖F(P,Δ∞,K∞)‖2 is minimized. The design of this
static robust control and its realization is described in [3]. The
controller is given by:

ū(k +1) = AΔū(k)+BΔē(k) (7)

where AΔ and BΔ are the controller gains that can be deter-
mined according to a desired bandwidth through the design pro-
cess. To implement (7), the periodic Kalman filter estimate
of the temporal-spatial signal error based on T S(n) sampling,

ê(k) = ĈRC(k)−CRC(k) ∈ ℜ3Mt is used in lieu of the actual
error, ē(k). In [3], TRC stabilization is assumed. In this paper,
this work is extended for the stabilization of the CRC map. The
error weighting, We = W̄T

e W̄e ∈ ℜ3Mt×3Mt which specifies the
relative importance of the CRC error at different colors is made
up of the color and image specific weightings as reported in [6].

STAGE-II Control
The objective for STAGE-II pre-filter compensation is to find

the inverse print map, CRC−1(t) : CL∗a∗b∗ → CCMY and impose it
in fsep in (2) such that CRC is an identity map. This will en-
able the printed colors to correspond to the desired(or requested)
colors.
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Figure 2. Sensing and control for CRC stabilization

There are two important considerations for this strategy to
work. Firstly, the effectiveness of this strategy is limited to
only colors that CRC(t) (i.e. the printer) can reproduced. Let
the color gamut of these reproducible colors be denoted here by
ĈL∗a∗b∗ ⊂ ℜ3. To realize effective color consistency control, the
gamut range of ĈL∗a∗b∗ needs to be maximized. This can only
be achieved by using the STAGE-I control that directly affects the
physical print process. Hence STAGE-I requirement is modified
here, so that in addition to maintaining the CRC(t) map to be
relatively stable, the goal of preserving and maximizing ĈL∗a∗b∗

range will also be emphasized. This emphasis can be achieved by
appropriate putting higher weights in weighting matrix, W̄e.

Secondly, to find the inverse print map, CRC−1(t) at each
time, t = kT,k ∈ Z + consider a set of NT desired colors i.e.

D =
{

(xi,yi)|xi ∈ CCMY,yi ∈ ĈL∗a∗b∗ for i = 1, . . . ,NT
}

(8)

xi for i = 1, . . . ,NT is assumed to uniformly covers the CMY col-
orspace. Here we seek to approximate CRC−1(t) such that

CRC−1(t) = arg min
CRC−1(t)

1
NT

NT

∑
i=1

∥∥∥xi −CRC−1(t)[yi]
∥∥∥2

(9)

The most common and easiest way to address this problem is
to first evaluate the interpolation functions at a regular lattice of
points, in the input space (i.e. CMY colorspace) and then build
a multidimensional look-up table (LUT) [2]. A fast interpola-
tion technique such as trilinear or tetrahedral interpolation is then
used to transform the image data using this LUT. Here, the data
set D in (8) needed for this construction is obtained from the re-
constructed CRC using the time-sequential sampling approach.
The use of this reconstructed information avoids the need to print
large number of samples to define the inverse CRC. Additionally,
the use of the time-sequential sampling approach enables the right
instance to update the inverse print map to ensure that the color
reproduction consistency is maintained.

Experimental Study
The proposed CRC stabilization system using both STAGE-I

and STAGE-II control was experimentally tested on a Xerox
Phaser 7700 xerographic printer. A X-rite DTP70 scanning spec-
trophotometer is used to measured the printed color patches. Fig-
ure 2 shows the schematic of the experimental setup. Unfortu-
nately, we do not have direct access to the xerographic actuators.
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Therefore, to evaluate the proposed CRC stabilization control sys-
tem, virtual printer models are first used to generate the tonal re-
sponses of the CMY primaries. The disturbances were artificially
introduced by injecting a simulated disturbance source as shown
in Figure 2 given by P−1[d̄(k)] where P : CCMY → CL∗a∗b∗ is the
nominal print model of the Xerox Phaser. Here, d̄(k) is given
by a two-band frequency model which is representative of an ac-
tual printer(see [4] for details), where the temporal-spatial fre-
quency content is assumed to be contained in an ellipsoidal spec-

tral support Θ(W,U) =
{

( f ,u)
∣∣∣∣ f 2/W 2 +

N
∑

i=1
u2

i /U2
i = 1

}
where

W = 0.01[Hz] and U = [2,2,2][cycles/tone]. These form our
physical color printing setup.

To identify the matrix of nominal sensitivity function φ̂ ∈
ℜ3Mt×3m as given by (4), factorial experiments were performed
on our experimental setup. Here, each primary’s actuator is set
at one of 2 settings within its range. With m = 3 actuators for
each primary color, a total of 23 = 8 different settings are tested.
With 3 primaries, we have a total of 83 = 512 different set of
actuator settings for the CMY primaries virtual models. From
these data, the nominal sensitivity function were obtained using
the least square method. Hence we can proceed with the design
of the color consistency controller as given in this paper.

The purpose of the STAGE-I control is to maintain the range
of the CRC, i.e. the printed output color gamut, ĈL∗a∗b∗ . Resid-
ual variations can then be compensated in the image processing
actuators with the availability of the reconstructed CRC. The ef-
fectiveness of STAGE-II control depends on the accuracy of the
reconstructed CRC at all Mt tones. In STAGE-II control, the in-
verse print map is achieved with interpolation using the multi-
dimensional look-up table approach [2]. In this experiment, the
desired color gamut, C L∗a∗b∗ for STAGE-II compensation is se-
lected such that C L∗a∗b∗ ⊂ ĈL∗a∗b∗ at all times to avoid infeasible
interpolation at the boundary. This assumption greatly simplifies
the inversion process and suffices for the demonstration of the
proposed color consistency strategy.

Figure 3 shows the CRC stabilization performance in term of
the mean of ΔE∗

94 at each print cycle, k using the proposed color
control system. The designed optimal T S(1) sampling is used
here. Compared to the case without any stabilization control, the
STAGE-I control effectively reduces the error between the printed
output colors and the desired colors. However more effective sta-
bilization can be achieved using STAGE-II control.

Conclusion
In this paper a 2-STAGE CRC stabilization controller for

maintaining color consistency is proposed. The STAGE-I control
makes use of the xerographic actuators to ensure that the range of
the CRC is preserved. Then, a STAGE-II compensation adjust the
image processing step such that the CRC is as close as possible to
the desired CRC. STAGE-I and STAGE-II control are made pos-
sible by the availability of the time-varying CRC estimates using
the designed optimal T S(1) sampling approach. Experimental re-
sults show the effectiveness of the proposed approach for CRC
stabilization. To maintain color consistency, direct CRC control
as opposed to controlling the C, M and Y primary TRCs, has the
potential benefit of compensating the disturbances in the mixing
process. We will better justify this gain in future publication.
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