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Abstract
Intermediate transfer belts represent an important technol-

ogy component of the two-transfer systems commonly found in
color laser printers. A number of mechanical and electrical prop-
erties contribute to the performance of intermediate transfer belts
in these systems. Of these, resistivity and dielectric permittivity
are two of the most critical electrical properties and are related
to the bulk properties resistance and capacitance, respectively.
Accurate measurement and specification of these electrical prop-
erties is important to the design of two-transfer systems.

Recently, an electrical characterization method for interme-
diate transfer belts was published [1], where the resistance and
capacitance were determined from amplitude and phase measure-
ments of an applied A.C. voltage. We report on implementation
of and improvements to the previously published method. It was
found that the previous implementation did not make efficient use
of all measured data. We derive a more efficient and robust esti-
mator for the resistance and capacitance of a transfer belt based
on measurements of gain and phase. We also performed a gauge
repeatability and reliability study of the fixture. Our approach
represents a significant refinement of the previously published
characterization approach for intermediate transfer belts.

Introduction
Intermediate transfer belts (ITBs) are important components

of two-transfer systems typically used in color laser printers.
There are several electrical, mechanical, and material parameters
that are important to the performance of toner transfer. Since the
fundamental physics of transfer relies upon the electric force ex-
erted upon charged toner, the electrical properties resistance and
capacitance are two of the more fundamental bulk properties of
ITBs.

In this paper, we expand upon the electrical characterization
procedure applied by Tsuneo Mizuno and Jun-ichi Hanna to char-
acterize ITBs [1]. The Mizuno fixture is employed to study the
conductivity and dielectric properties of both ITBs and paper me-
dia. It was found that, while the Mizuno fixture has proven effec-
tive, a more detailed analysis of the estimation of resistance and
capacitance is needed. In this regard, we have developed a more
efficient estimator of the critical ITB electrical parameters.

Experimental Setup
The experimental setup is very similar to that previously

described [1]. A material under test is paced between circular
metal electrodes with an active measurement diameter of 60 mm.
The test fixture is pre-programmed to provide either a continu-
ous wave alternating current (AC response) waveform or a step
(DC response). An R0 = 1 MΩ resistor is placed in series with
the source voltage. The equivalent circuit model of the fixture re-

quires a probe resistance of Rp ≈ 100 MΩ and probe capacitance
of Cp ≈ 3 pF be placed in parallel with the material under test.
The purpose of the test fixture is to estimate the belt resistance Rb
and capacitance Cb.

A gauge Repeatability & Reproducibility study was con-
ducted to determine the fixture’s influence on measurement vari-
ation. The test method yielded 270 measurements taken from five
different transfer belt materials over a three day period. Both mea-
surements, AC and DC response, were considered in the study.
Results show the fixture variation to be approximately 15 % for
the AC measurement and approximately 12 % for the DC mea-
surement. Using the commonly accepted threshold of 15 % max
variation, the fixture demonstrates good measurement capability.

Estimation of R and C
A non-iterative, closed-form estimator has been developed

for the determination of belt capacitance and resistance. There are
two steps to this algebraic estimate. First, the gain (Γ) and phase
(φ ) must be determined from raw data. Second, the values of R
and C are estimated from Γ and φ . Before describing the estima-
tion procedure, a noise model is introduced for the optimization
and evaluation of the estimator.

Noise Model
Thermal noise picked up by resistors is commonly modeled

as white Gaussian noise [2]. This noise has a flat power spectral
density (PSD) over a wide frequency range and is implemented
numerically as a random variable with zero mean and nonzero
variance σn. Independent noise signals ni(t) and no(t) are added
to the noiseless input voltage signal v0

i (t) and noiseless output
voltage signal v0

o(t) to generate synthetic measurement data for
the input and output voltages, respectively. The synthetic data is
represented mathematically by

vi(t) = v0
i (t)+ni(t) = Vi cos(ωt +φi)+ni(t) (1a)

vo(t) = v0
o(t)+n0(t) = Vo cos(ωt +φo)+n0(t), (1b)

where ω ≡ 2π f is the angular frequency, φi and φ0 are the in-
put and output voltage phases, and Vi and Vo are the input and
output voltage magnitudes. In general, Vi is known, but an inde-
pendent estimate can be used for verification. The output voltage
magnitude can be written in terms of the gain (Γ) as Vo ≡ ΓVi. Es-
timation of Γ and the phase φ ≡ φo−φi is necessary and sufficient
for subsequent extraction of the critical ITB electrical parameters.

Estimate of Gain and Phase
The gain and phase of the voltage waveforms are estimated

by first writing the waveform of interest as [3]

v0(t) = V cos(ωt +φ) = acos(ωt)+bsin(ωt) (2)

f
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where V and φ are generic variables used here for demonstration.
The parameters a and b can be estimated using a least squares fit
of the linear equation ȳ = ¯̄Mx̄, where x̄ = [ab]T is the unknown pa-
rameter vector, ȳ = [v(t1) . . .v(tK)]T is the K by 1 vector of voltage
measurements at different times tk, and

¯̄M =

⎡
⎢⎣

cos(ωt1) sin(ωt1)
...

...
cos(ωtK) sin(ωtK)

⎤
⎥⎦ (3)

is a K by 2 matrix, where K is the number of data samples. The
system is solved using a QR factorization algorithm to yield the
estimates for a and b. The amplitude and phase of a measured
waveform is then determined via

V =
√

a2 +b2 (4a)

φ = tan−1 (b/a) . (4b)

To demonstrate the effectiveness of this method, the ampli-
tude and phase estimate errors have been plotted versus signal-
to-noise ratio (SNR) in Figure 1. The SNR ≡ 10log10(V 2/σn)
gives the ratio of noise powers [2]. The estimate error is given
in the same units as the estimated parameter x̂ as RMSE(x̂) =√

E(x̂−x)2, where E(x̂−x)2 is the expected value of the squared
difference between the estimated value x̂ and the actual value x of
some parameter x = V,φ .
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Figure 1. (a) Amplitude and (b) phase estimation error from synthetic data

with nominal amplitude V = 1 and nominal phase φ = − π
2 . K = 104 samples

were used in the Monte-Carlo simulation.

It is seen in Figure 1 that the estimates of amplitude and
phase approach the Cramer-Rao Lower Bound (CRLB) over the
SNR range of interest SNR ≤ 0 dB. The CRLB gives the mini-
mum possible variance of an unbiased estimator [4]. It is calcu-
lated via

CRLB = σ 2
n

[
¯̄JT ¯̄J

]−1
, (5)

where the Jacobian is the derivate of Equation (2)

¯̄J =
∂ v̄0

∂ x̄

[
∂ v̄0
∂V

∂ v̄0
∂φ

]
. (6)

From this analysis, it is expected that the estimates of gain and
phase are asymptomatically efficient. That is, they attain the
CRLB in low noise.

Estimate of Resistance and Capacitance
In this section, the estimate of resistance and capacitance is

given in terms of the gain and phase. Instead of estimating resis-
tance, the conductance Gb ≡ 1/Rb will be estimated for numerical

stability and ease of discussion since Gb is more analogous to Cb
than is Rb. Likewise, we can define the parameters G0 ≡ 1/R0 and
Gp ≡ 1/Rp as the source conductance and probe conductance, re-
spectively. The algebraic estimator[

Γ j
]

G = G0
(
cosφ j −Γ j

)
(7a)[

ω jΓ j
]
C = G0 sinφ j (7b)

is derived from the equivalent circuit model given in [1]. Here, the
subscript j ∈ {1 . . .J} spans the number of independent measure-
ments used for a particular estimate. Equation (7) gives estimates
of the parallel circuit combinations G≡Gb +Gp and C ≡Cb +Cp
in terms of the previously estimated quantities Γ and φ . The val-
ues of Gb and Cb are deduced simply from the estimates of G and
C, which are determined from Equation (7) by QR factorization.
This allows for estimation of Gb = G−Gp and/or Cb = C−Cp in
either the J = 1 critically determined case or the J > 1 overdeter-
mined case by least squares solution of a linear system.

There are a few points to make about Equation (7). First, it is
numerically robust since it requires only a linear system solution
for the parameter estimation. Second, G and C are determined
by separate equations. Third, the system is critically determined
when only one measurement exists at a single frequency. This
last point is an important distinction of our method since the pre-
viously published approach requires at least two measurements at
different frequencies for a single estimate of G and/or C. This is
because we use all of the available data for both gain and phase in
our estimate.

In Figure 2 we compare the error induced upon the estimate
of Gb and Cb using both the algebraic estimator presented here
and the previously published Mizuno estimate [1] which we im-
plemented verbatim. The noise model is implemented and car-
ried through the estimation of gain and phase as described in the
previous sections. The figure shows that the algebraic estimate
provides a superior estimate of the critical electrical parameters.
Furthermore, the estimate error can be highly biased at low SNR.
Although not shown, the Mizuno approach can produce signifi-
cantly higher bias at low SNR, which may severely degrade the
subsequent extracted time decay information from DC analysis.
Also, the Mizuno estimate is not numerically robust in very low
SNR due to the possibility of having negative square roots in the
parameter extraction (see for example Equation (9) in [1]).
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Figure 2. (a) Conductance and (b) capacitance estimation error from syn-

thetic data. K = 2000 samples were used in the Monte-Carlo simulation. The

actual values used in the generation of synthetic data are Rb = 10 MΩ and

Cb = 500 pF.

Application to Non-Linear Media
From the previous section, it is known that the estimates

of Gb and Cb are more efficient than the previously published
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method. One point to note from Figure 2, however, is that any
desired error tolerance can be achieved using either method by
simply increasing the SNR. This can, in principle, be done by
increasing the input voltage amplitude Vi. This, of course, as-
sumes that only the white Gaussian noise is present. However,
it is well known that all materials exhibit nonlinear response to
applied electric field [5]. This nonlinear response can and does
introduce error in the estimation of gain and phase.

To label a material as being “linear” requires the specifica-
tion of an operating range over which the approximation is made.
Since no material conductivity remains linear in an applied elec-
tric field of arbitrarily large magnitude, we cannot simply increase
the source voltage to our material under test to achieve arbitrar-
ily high SNR. The reason is that while the SNR gets larger, the
output signal is distorted by the nonlinearity of the material since
the conductivity of the material changes as the applied AC volt-
age signal moves along the sinusoid. Near the zero crossings, the
material responds in a linear way, but as the voltage approaches a
large magnitude maxima or minima in the waveform, the nonlin-
ear material response deforms the output voltage signal. Fourier
transform of the resulting signal should then reveal that higher
order harmonics have been excited. That is exactly what is ob-
served in Figure 3. For an applied AC voltage of 50 V magnitude
at 250 Hz, no significant generation of high order harmonics is
observed. However, as the input voltage is increased to 250 V ,
500 V , and 1000 V , the third harmonic at 750 Hz increases to
about 30 dB below the primary signal power. Likewise, the SNR
goes from approximately 50 dB to greater than 60 dB over the
same range. However, the 1000 V input signal produces an output
with an effective SNR of only about 30 dB due to the aforemen-
tioned amplification of the higher harmonics.
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Figure 3. Power spectral density of the AC output voltage measurements for

a PI belt. The amplitude of the input voltage is (a) 50 V , (b) 250 V , (c) 500 V ,

and (d) 1000 V . The PSD is computed via FFT in MATLAB R©normalized to

the power at the measurement frequency f = 250 Hz. Higher harmonics are

generated by nonlinear resistance of the belt at high voltages.

Since it is difficult, if not impossible, to tailor an estimator to
a nonlinear system response, we have chosen to optimize our es-
timator to a linear material response where the signal is corrupted
primarily by thermal noise. In this regard, it is necessary to apply
the estimation procedure at low SNR to avoid generation of higher

order harmonics, hence the need for the more efficient estimator
presented in the previous sections.

Application to Frequency Dispersive Media
In a previous publication, the response of capacitance and

resistance as a function of voltage was demonstrated [1]. It was
shown that while ITB resistance is a strong function of voltage,
the capacitance is not. This was done by applying a step response
to the belt electrical characterization fixture and measuring the
voltage decay. Such a method is useful in mapping the resistance
and capacitance versus voltage.

In this section, we ask the question: Are belt resistance and
capacitance temporally dispersive? Perhaps a more important
question to ask is: Can we measure the frequency response of
transfer media? The answer to that question is yes since the esti-
mator derived herein is critically determined for a single measure-
ment. That is, we can extract both R and C at a single frequency
and, subsequently, map both R( f ) and C( f ).

Figure 4 shows the measured response of three media, the
PI belt used in the previous section, a sheet of International Pa-
per’s 24 # Hammermill R©Laser Print, and Mohawk Paper’s 24 #

Strathmore Writing R©Paper. These measurements were per-
formed in a controlled humidity chamber at temperature 72◦ F
and relative humidity 50 %. This data shows that both the resis-
tance and capacitance of ITBs and paper media can be functions
of frequency. Therefore, both resistivity and dielectric permit-
tivity may be temporally dispersive over the frequency range of
interest. The data also demonstrates the ability to extract resis-
tance and capacitance from measurements at single frequencies.
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Figure 4. Estimates of (a) resistance and (b) capacitance from measured

AC data. The materials under test are a PI transfer belt, Hammermill Laser

paper, and Strathmore paper.

Conclusions
An asymptotically efficient estimator has been derived for

the estimate of resistance and capacitance from an electrical char-
acterization fixture. The estimator represents an improvement to
the method originally published by Mizunno and Hanna for the
electrical characterization of transfer belts [1]. Our estimate is
needed for three reasons. First, it is numerically robust in that it
doesn’t suffer from the possibility of negative square roots that
can occur in the previous method. Second, the estimates of re-
sistance and capacitance exhibit lower error than the previous
method. This is important when dealing with low SNR to avoid
corruption of the output voltage signal do to nonlinear response
of the material. Third, it allows for the determination of resis-
tance and capacitance at single frequencies, which is necessary
to determine the dispersive behavior of the material under test.

NIP25 and Digital Fabrication 2009     Technical Program and Proceedings 263



We conclude that the belt electrical characterization fixture and
modified parameter estimation procedure can be used effectively
to predict the critical electrical parameters of transfer belts and
transfer media.
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