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Abstract 
In textile inkjet printing, pigment inks have become one of 

the main colorants because of its excellent light fastness and 
suitable to all sorts of fibers. Pigments are applied as aqueous 
dispersion due to their water insoluble. Encapsulation of 
pigments with polymer can protect them from agglomeration and 
unwanted environmental influences such as UV radiation or acid 
and alkali. The encapsulation leads to better storage stability, 
color stability and durability, and the film formation can be 
adjusted. In this paper, organic pigments (P.B.65, 73, 14, and 83) 
were encapsulated with polystyrene and polyacrylates via 
miniemulsion polymerization. The properties of pigment 
dispersions dispersed in water and monomers were evaluated. 
With ultrasonication time prolong, the particle size of pigment 
dispersions decreased. For 30 min ultrasonication, the particle 
size of P.Y. 14 and 83 dispersions in water was smaller than that 
of P.Y. 65 and 73. The particle size of pigment dispersion in 
styrene was smaller than that in acrylates. The stability of 
P.Y.83/monomer dispersion was the best. There was almost no 
separated monomer layer in P.Y.83 dispersions, but significant 
separated monomer layer can be seen in P.Y.65 dispersions. The 
encapsulation ratios and efficiency of P.Y.83 with polymers were 
larger than that of P.Y.65. Acrylates tend to adsorb better on the 
surface of pigment particles than methacrylates, while the 
encapsulation ratios of polyacrylates were higher. 

Introduction  
Textiles inkjet printing as a new printing method with 

higher resolution, lower pollution and shorter run length has 
attracted more and more people’s attention. Pigmented and dyed 
water-based inks are two categories of inks in textile inkjet 
printing. Pigmented water-based ink has much more superiority 
than dyed ink due to higher light and wash fastness, suitable for 
all kinds of fibers and fabrics, shorter printing procedure. 
Pigments are applied as aqueous dispersion due to their water 
insoluble. Encapsulation of pigments with polymer can protect 
them from agglomeration and unwanted environmental 
influences such as UV radiation or acid and alkali. The 
encapsulation leads to better storage stability, color stability and 
durability, and the film formation can be adjusted[1]. 

In recently years, a variety of encapsulation techniques, e.g. 
emulsion, dispersion, and miniemulsion polymerization, have 
been developed to prepare nanocomposite particles for 
application in coatings, optics, and catalysis[2, 3]. One of the most 
common methods is emulsion polymerization. Successful 
encapsulations have been reported, for example, with inorganic 
titanium dioxide[4] and colloidal silica[5], using various polymeric 
materials. Because of the complexity of the particle nucleation 

mechanism in emulsion polymerization, it appears that it is 
difficult to achieve high encapsulation efficiencies by this 
technique.  

In recent literature, miniemulsion polymerization was found 
to be attractive to obtain polymeric nanocomposites which can 
not be achieved by emulsion and dispersion polymerization. 
Miniemulsion polymerization offers some advantages compared 
to emulsion and dispersion polymerization. Miniemulsion is 
critically stabilized dispersion, which is consist of droplets in the 
range about 50-500 nm in diameter. Direct miniemulsions can be 
processed by shearing a mixture of oil, water, surfactant and a 
hydrophobe (costabilizer). The role of hydrophobe is to stabilize 
the small droplets against diffusion degradation, so-called 
Ostwald ripening. Contrary to emulsion polymerization, the 
monomer droplets are small and numerous so that the 
polymerization mainly occurs by radical entry into the existing 
miniemulsion droplets, called droplet nucleation, without 
nucleation of new particles. 

Using the miniemulsion polymerization technique, the 
pigment can be encapsulated with polymers efficiently. Using 
the miniemulsion process, hydrophobic particles can be 
dispersed in the monomer phase without any former treatment, as 
for the polystyrene encapsulation of organic phthalocyanine blue 
pigment or carbon black particles[6]. However, for encapsulation 
of the hydrophilic particles such as titanium dioxide, magnetite 
or silica with hydrophobic polymers, hydrophobization is 
necessary prior to or during the introduction in the monomer 
phase. 

In present work, organic pigments were encapsulated by 
polymers employing miniemulsion polymerization. The 
dispersibility of pigment in water and styrene and acrylates 
monomers was evaluated. The encapsulation ratios and 
efficiency pigment with different polymers were measured. 

Experimental 

Reagents 
Water was distilled and deionized before use. The anionic 

surfactant sodium dodecyl sulfate (SDS) bought from Sinopharm 
Chemical Reagent Co., LtdS was used as received. The organic 
yellow pigments (P.Y.65, 73, 14, 83, Figure 1), gifts from Chang 
zhou North American Chemical Group, were used as supplied. 
The monomers styrene, methacrylate (MA), methyl methacylate 
(MMA), butyl acrylate (BA) and butyl methacylste (BMA) 
(Sinopharm Chemical Reagent Co., LtdS) were distilled under 
vacuum and kept refrigerated until use. The initiator 2, 2’-
azobisisobutylo nitrile (AIBN) was purified by recrystallization 
from ethanol. 

660 Society for Imaging Science and Technology



 

 

 

 

 

 

 

 

 

 
 

Figure 1. Structures of yellow pigments (I) P.Y.65, (II) P.Y.73, (III) P.Y.14, 
(IV) P.Y.83 

Pigment dispersion 
Pigment dispersion was normally carried out by mechanical 

milling or ultrasonication. The aim of these processes was to 
apply external force to break up pigment aggregates to small 
particles. During the dispersion process, dispersants adsorbed 
onto the surface of pigment particles to prevent particles 
agglomerating. 

The SDS stabilized dispersion of pigment was prepared as 
follows: SDS (1g, 20% to pigment) was dissolved in water (44g). 
The pigment powder (5g) was added to the above solution 
slowly, stirring the mixture at 700 rpm for 1 h. The residual 
water (50g) was added, then the mixture was ultrasonicated in a 
JY98-3D Ultrasonic Pulverizer (Scientz company) at 800 W (1s 
pulse on/4s pulse off) for 10 min. During the ultrasonication 
process, the dispersion was cooled in a water bath. 

Particle size and its distribution 
The particle size was measured at 25oC using a Malvern 

Instrument NANO-ZS 90 at a fixed scattering angle of 90o. The 
dispersion was diluted with distilled water or monomer before 
measuring. Dynamic light scattering (DLS) measurements give a 
Z-average size, which is intensity mean of the particle diameter, 
and the polydispersity index (PDI), which provides information 
about the width of the particle size distribution.  

Pigment encapsulation process 
For prepare of monomer/pigment dispersion, two step 

emulsification procedures were produced. Firstly, the pigment 
was dispersed in SDS solution, and monomers were also 
emulsified with anionic surfactant SDS.  

The monomer miniemulsion was prepared by ultrasonic 
emulsification. An oil phase including 10 g styrene, 0.4g 
hexadecane and 0.4 g AIBN was mixed with a surfactant 
solution of 0.1 g anionic SDS in 40 g water. After vigorously 
stirring the mixture at 1000 rpm for 1 h for pre-emulsification, 
the miniemul- sions were prepared by pulse ultrasonicating the 
mixture for 2 min. During the ultrasonication process, the 
emulsion was cooled in an ice-water bath.  

The monomer miniemulsion was added into the SDS 
stabilized pigment dispersion drop by drop. The mixture was 
powerfully stirred at 800 rpm for 30 min, pulse ultrasonicated for 
2 min (1s pulse on/4s pulse off). In order to prevent pre-
polymerization of monomers during the ultrasonic process, the 
dispersion was kept in ice-water bath to maintain lower 
temperature. Finally, the reaction flask was heated to and 
maintained at 70oC for 4 h under slowly stirring.  

Encapsulation ratio and efficiency 
The free polymers were separated from emulsion by 

centrifugation. The emulsion was centrifugated at 13, 000 rpm in 
Centrifuge-5415 (Eppendorf, Germany) for 30min. The free 
polymers stayed at upper layer because of lower density. And, 
the pigments encapsulated with polymers were sedimentated at 
the bottom. The encapsulation ratio and efficiency were 
calculated as follows: 

 
 

 
 

 

Results and Discussion 

Pigment dispersions 

Pigment dispersed in water 
Pigment was not soluble in water and general organic 

solvents. Therefore, pigment must be dispersed in water or 
organic solvents. Pigment dispersion was normally carried out by 
mechanical milling or ultrasonication. 

Ultrasonic waves of high intensity ultrasound generate 
cavitations in liquids. The cavitations can be used in liquids for 
many processes, e.g. for mixing and blending, deagglomeration, 
milling and cell disintegration. In ultrasonication process, 
pigment aggregates were broken up to small particles because of 
ultrasonic cavitations. 

Table 1. Effect of ultrasonication time on particle size of 
pigment dispersions 

Time (min) Particle size (nm) 
P.Y.65 P.Y.73 P.Y.14 P.Y.83 

2 510.2 478.2 333.6 587.4 
5 442.4 392.4 270.4 486.5 
8 429.7 363.7 248.8 388.9 
10 408.9 347.8 251.1 372.1 
13 403.6 344.6 228.9 363.3 
15 410.3 335.7 230.2 314.3 
18 383.6 331.0 229.1 307.4 
20 376.3 322.5 218.2 312.7 
23 372.7 320.3 211.8 303.6 
25 352.4 313.7 210.7 281.5 
30 347.5 305.8 204.7 285.1 

The yellow pigments were with azo chromophores, P.Y. 65 
and 73 with mono-azo chromophore, P.Y. 14 and 83 with bis-azo 
chromophore (Shown in figure 1). It shown from table 1 that 
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with prolong time of ultrasonication, the particle size of pigment 
dispersions declined. For 30 min ultrasonication, the particle size 
of P.Y. 14 and 83 was smaller than that of P.Y. 65 and 73. The 
reason was that there were much more carboxyl and methoxy 
groups in the molecule of P.Y. 14 and 83 than that of P.Y. 65 
and 73. The pigments with more carboxyl and methoxy groups 
can be easily dispersed in water. 

Pigment dispersed in monomers 

Table 2. Particle size of pigment dispersions. 

Monomer Particle size (nm) 
P.Y.65 P.Y.73 P.Y.14 P.Y.83 

St 689 518 1423 1386 
MA —a 745 1702 — 

MMA — 3425 1403 1766 
BA 1247 623 1449 1995 

BMA — 763 1313 1343 
a The pigment was aggregated to large particles when diluted with 
monomer.  

Table 2 showed that the particle size of pigment dispersed 
in styrene was smaller than that dispersed in acrylates. There 
were benzene rings in pigment, which can interact with styrene 
that also had benzene ring. But for acrylate monomers, the 
interaction between acrylates and pigment was small; pigment 
can not be well dispersed in acylate monomers. 

Table 3. Stability of pigment dispersions in monomers (12ha) 
Monomer Upper layer ratios of pigment dispersion 

P.Y.65 P.Y.73 P.Y.14 P.Y.83 
St 0.10 0.20 0.00 0.10 

MA 0.30 0.10 0.10 0.05 
MMA 0.20 0.10 0.05 0.05 
BA 0.28 0.11 0.10 0.05 

BMA 0.10 0.10 0.10 0.05 
a The pigment dispersions were placed still for 12 hours after 
ultrasonication. 

Table 4. Stability of pigment dispersions in monomers (6da) 
Monomer Upper layer ratios of pigment dispersion 

P.Y. 65 P.Y. 73 P.Y. 14 P.Y. 83 
St 0.80 0.50 0.20 0.10 

MA 0.80 0.28 0.20 0.05 
MMA 0.75 0.25 0.25 0.05 
BA 0.50 0.28 0.20 0.05 

BMA 0.60 0.40 0.25 0.05 
a The pigment dispersions were placed still for 6 days after 
ultrasonication.  

The pigment/monomers dispersions were produced by 
ultrasonicating the mixture of pigment and monomers. But due to 
no emulsifier adding, the dispersions would be separated to two 
layers, which the upper one was transparent monomers and the 
under one was pigment/monomer dispersion. The lager ratio of 
upper layer indicated that this pigment dispersion was unstable; 
there was less interaction between pigment particles and 
monomers.  

Table3 and 4 showed the upper layer ratios of pigment 
dispersions in different monomers, kept still for 12 hours and 6 

days, respectively. The upper layer ratios of P.Y. 65 dispersions 
in all monomers were the largest, and these of P.Y. 83 
dispersions were the smallest, especially in acrylate monomers 
there almost no monomer layer separated. The stability 
difference was related to the structures of pigments and 
monomers. There were benzene ring, carboxyl and methoxyl 
groups in yellow pigments, and the numbers of these groups 
increased with the pigment structure increasing. The structure of 
P.Y.65 and 73 with mono-azo chromophore have two benzene 
rings and two carboxyl groups, but for P.Y.14 and 83 with bis-
azo chromophore there were four benzene ring and four carboxyl 
groups. There were some interactions between pigments and 
monomers which also have benzene ring or carboxyl groups. The 
interaction enhanced with the numbers of benzene and carboxyl 
groups in pigment increasing. Therefore, P.Y.83 dispersions in 
all monomers were very stable and almost no separated 
monomers layer.  

Pigment encapsulation with polymers 
Pigments P.Y.65 and 83 were encapsulated with poly- 

styrene or polyacrylates via miniemulsion polymerization. The 
encapsulation ratios and efficiency were shown in table 5, 6.  

According to mechanism of miniemulsion polymerization, 
radicals of initiators entered into the monomer droplets to 
initiation polymerization. Therefore, in order to acquire good 
encapsulation efficiency, all monomers must adsorb on the 
surface on pigment particles. Free monomer droplets (without 
pigment) would polymerize to hollow polymer micro spheres, 
which can not encapsulate pigment particles.  

It is shown from table 5 and 6 that the encapsulation ratios 
and efficiency of P.Y.83 was higher than that of P.Y.65. The 
reason of that was that there were much more benzene ring and 
carboxyl groups in P.Y.83; the hydrophobic interaction between 
pigment and monomers was higher, so the monomers tend to 
adsorb on the surface of pigment particles. However, for P.Y.65 
with smaller structure, the hydrophobic interaction was smaller, 
some monomer droplets entered into the micells of surfactant to 
form free polymers. 

Table 5. P.Y.65 encapsulation with polymers a 

Monomer Encapsulation 
    Ratio (%) 

Encapsulation 
Efficiency (%) 

St 34.15 57.16 
MA 31.98 41.38 

MMA 33.44 71.73 
BA 34.48 39.19 

BMA 33.44 71.73 
a The weight ratios of pigment to monomer were 1:1. 

Table 6. P.Y.83 encapsulation with polymersa 

Monomer Encapsulation 
  Ratio (%) 

Encapsulation 
Efficiency (%) 

St 35.40 53.91 
MA 41.24 72.83 

MMA 36.74 57.18 
BA 34.92 54.43 

BMA 40.45 62.27 
a The weight ratios of pigment to monomer were 1:1. 
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Table 5 and 6 showed that encapsulation ratios of pigment 
with polyacrylates were larger than that of with polymeth- 
acrylates, and also the encapsulation efficiency. It might be 
related to the structure of acrylates. With linear structure, the 
acrylates can well adsorb on the surface of pigment particles. 
Refer to methacrylates, there was some steric hindrance because 
of the methyl group in –CH=CH–, so the adsorption of 
methacrylates on the pigment was not as well as the acrylates. 

Conclusions  
Pigments are applied as aqueous dispersion due to their 

water insoluble. Encapsulation of pigments with polymer can 
protect them from agglomeration and unwanted environmental 
influences such as UV radiation or acid and alkali. The 
encapsulation leads to better storage stability, color stability and 
durability, and the film formation can be adjusted.  

In the present work, organic yellow pigments (P.Y.65, 73, 
14, and 83) were encapsulated with polystyrene and polyacry- 
lates employing miniemulsion polymerization. The properties of 
pigment dispersions dispersed in water and monomers were 
evaluated. With ultrasonication time prolong, the particle size of 
pigment dispersions decreased. For 30 min ultrasonication, the 
particle size of P.Y.14 and 83 dispersions in water was smaller 
than that of P.Y.65 and 73. The particle size of pigment 
dispersion in styrene was smaller than that in acrylates. The 
stability of P.Y.83/monomer dispersion was the best. There was 
almost no separated monomer layer in P.Y.83 dispersions, but 
significant separated monomer layer can be seen in P.Y.65 
dispersions. The encapsulation ratios and efficiency of P.Y.83 
with the same polymers were larger than that of P.Y.65. 
Acrylates tend to adsorb better on the surface of pigment 
particles than methacrylates, while the encapsulation ratios of 
polyacrylates were higher. 
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