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Abstract 
In this paper, we propose a new control algorithm based 

on model predictive control that is targeted to control the TC in 
a two-component toner dispense system. MPC is extremely 
effective in controlling systems with nonlinear cost function, 
time delay, constraints on the actuator and states. We also 
present a methodology to make the control loop robust to sensor 
noise.   

Introduction 
In an electrophotographic printing process, an electrostatic 

image formed on the surface of a drum or a photoreceptor belt is 
developed by the application of finely divided toner particles to 
form an image. For good quality image reproduction, it is 
essential to closely monitor the development process to insure 
the color consistency in prints.  For example it is very critical to 
make sure that the four color components (C, M, Y, and K) are 
combined at the correct toner density since any deviation will be 
visible in the final print, especially in half toned images. 
Developability is directly related to the rate at which 
development takes place. The development rate is a function of 
the toner concentration (TC) in the developer housing. The 
developer used inside the development system is a mixture of 
carrier particles and toner particles. In order to produce good 
quality prints it is necessary to maintain the TC of this mixture 
to within limits. TC is defined as the ratio of the number of 
toner particles to the number of carrier particles in the developer 
mixture. TC is an important parameter that can change during 
production run (unless efficiently controlled) and can contribute 
to color drift over time. Overall color stability of the closed loop 
TC control system depends on how well the system components 
are optimized.  

To improve overall TC performance, at least three major 
system components must be optimized: (1) open loop toner 
replenishment (dispense) and mixing system (i.e., process plant 
itself), (2) a TC measurement system (i.e., TC sensor), and (3) a 
closed loop control algorithm to maintain the TC level close to a 
predefined target. Optimizations of the toner replenishment 
system and measurement system have been described in papers 
and patents sited in Chapter9 of the book [1]. There is still an 
opportunity to further improve the TC tracking performance by 
optimizing the controllers which is the subject of this paper.  

In this paper, we propose a new Model Predictive Control 
(MPC) based feedback control algorithm that is targeted to 
control the TC in a two-component toner dispense system. MPC 
method is selected in order to minimize a nonlinear optimization 
function and yet reach tracking in the presence of additional 
constraints such as time-delay in the toner dispense, dispense 
rate limits etc. Linear controllers described in Reference 1 are 
not suitable to optimize under these constraints. We use the state 

space representation of the TC control system of Reference 1 to 
further build on a more complex control algorithm. As a result, 
conventional Smith Predictor, anti-windup compensators are not 
required.  

Toner Concentration Control 
The proper development of a latent electrostatic image on a 

photoreceptor by the toner particles is directly tied to the correct 
TC in the developer. Excess toner concentration will result in 
too much background in the developed image. This means that a 
white background may appear as a colored background. On the 
other hand, if the toner concentration is much less than the 
desired target value, it will result in a lack of toner coverage in 
the image. Therefore, to insure high quality printing, TC must 
be continuously monitored and adjusted. A TC control loop 
normally contains a feed forward and a feedback component, in 
which the TC level is sensed by a sensor placed in the 
development housing and control adjustments are made to the 
toner dispense motor using TC sensor and the image pixels data.   

Open Loop TC System Model 
Toner concentration is the ratio of toner mass to the carrier 

mass. The toner mass ( tm ) at time k  (TC cycle) is modeled by 
the following difference equation  

)()()()1( kmasdevkmasdisktmktm −−+=+ μ                       (1)               
where =)(ktm  mass of the toner at print cycle k in grams.  

=)(kmasdis  mass of toner dispensed from the dispenser at 
print cycle k in grams. =)(kmasdev mass of toner which is used 
in the image based on the consumption profile at print cycle k in 
grams. =μ dispense delay (in number of cycles). It includes the 
delay in the mixing system. =k print number. The mass 
dispensed is calculated by using the duty cycle obtained by the 
feedback controller. The TC is defined as the ratio of the toner 
mass to the carrier mass. Rewriting Equation (1) in terms of TC 
results in 

)]()([)()1( kvkugktcktc −−+=+ μ                                        (2)   
where )(ku is the dispensed mass and )(kv  is the developed 
mass and g is a scale factor defined as: 1)( −= scarriermasg .                        
The block diagram of the system in Equation (2) is shown in 
Figure1. 
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Figure 1: Block diagram of the open loop TC model 

To control the TC system shown in Figure 1, different 
approaches have been taken in the past. For example, a TC 
control methodology proposed by Y. R. Wang and L.K. Mestha 
[2] involves making TC measurements on a regular basis and 
comparing them with the TC set points to generate the error 
signal. The error signal is then passed through a proportional 
integral controller with an anti-windup compensator and Smith 
Predictor. The drawback of this approach is in its sensitivity to 
noise and the need for a Smith Predictor. A modified version of 
this algorithm incorporating a Kalman filter for noise reduction 
is given in [2]. In this paper, we propose a method based on 
model predictive control. The proposed approach is robust to 
noise, system disturbance, , input constraints and eliminates the 
need for a Smith Predictor and anti-windup compensators. The 
open loop system described by Equation 2 has a delay of μ  
cycles. This delay is split into μ  states. Derivations of the state 
equations are shown in Reference [1] 

 General Model Predictive Control 
Model predictive control (MPC) [3] is the most useful 

control methodology for the control of systems with a 
constrained dynamic. In model predictive control, the control 
action at time k  is determined by solving a finite horizon open 
loop-optimal control problem. The first sample of the control 
action is applied and the process is repeated for the next time 
instant 1+k . The block diagram of a MPC is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
Figure 2:  Model Predictive Control 
 

In an MPC, the set points are computed based on a constrained 
optimization of a steady-state process model. Then a model-
based predictive algorithm ensures that the process outputs track 
the desired set points over a prescribed horizon. MPC uses the 
process model in two ways: 
1. It uses the model to predict the effect of the past control on 

P  future output samples. 
2. It uses the model to compute the optimal M  input control 

samples. 
Once the controller is obtained, the first sample of the control 
signal is realized and the process is repeated for the next time 
instant.  This is shown in Figure 4. Model predictive control 
algorithms can be defined in terms of the system time response 
such as step response or state equations.   
 
Model Predictive Controller – A MIMO 
Design 

The results obtained for SISO-MPC [3] can be extended to 
the MIMO systems. Consider a MIMO system with N inputs 
and N outputs as shown in Figure (3). 
 
 
 
     
 
 
Figure 3: A MIMO system 
 
Let the system be described by the following step response 
equations, 

Nk
P
NkNNNkNkNNk

k
P
kkNNkkk

dyuAuAuAy

dyuAuAuAy

++Δ++Δ+Δ=

++Δ++Δ+Δ=

22211

1112121111

ˆ

ˆ

L

M

L

     (3) 

The above equations can be written in a more compact form as 
 

k
P
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where kŷ , P

ky , kd  are 1×PN column vectors, kuΔ  is 
1×MN  and A  is an NMNP × matrix defined as: 
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jkŷ is the step response of the thj  output at time k , P
jky  is the 

thj  future output at time k , jkd is the disturbance at the thj  

output at time k , and )1()( −−=Δ kukuu jjjk . Each sub-

matrix ijA  has the following structure. 
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(6) 
Each vector ikuΔ  has the following structure. 
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The goal is to make sure that kŷ  tracks the desired trajectory 
or etty arg . Therefore, we minimize the norm of prediction error 
with respect to the future control moves. That is,  
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Subject to the following constraints  
 

1)( Mku ≤Δ      and  maxmin )( ukuu ≤≤          (9) 
 
There is no closed form solution to this optimization problem. 
Numerical optimization algorithms that can handle constraints 
can be used. Let the solution to this optimization problem 
be ku*Δ , then the control law kuΔ  is computed as 
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where b is a M×1 row vector given by: ]001[ L=b                                

State Space MIMO Model Predictive Control. 
Consider an open loop control system given by the state 

space equations 
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where nRkx ∈)( is the state vector, mRku ∈)( is the input 
vector, mRkd ∈)( is the disturbance vector, nRkw ∈)( is the 
zero mean white process noise vector, rRky ∈)( is the 
measurement vector, rRkz ∈)( is the noise free output vector, 

rRkv ∈)( is the zero mean white measurement noise vector, 
nnRA ×∈ , mnRBB ×∈~, , and nrRC ×∈ . It is assumed that the 

system given in (3) is controllable. Define the difference state 
vector )1()()( −−=Δ kxkxkx   and the output vector )(kz  as 
new states, then 
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The above equations in an augmented vector form are: 
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The state vector )(kx is estimated using a state observer given 
by 
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The estimator (or observer) of equation (13) provides the one-
step prediction of the extended state vector )(kx . For a simple 
state observer design reader is referred to Reference 1. The gain 
K  for the observer equation 13 is obtained using Kalman 
filtering algorithm or observer design algorithm. Define 
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Where M  and P  are the control horizon and prediction 
horizon. The predicted output over the prediction horizon is 
given by: 
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where )1|(ˆ)()( −−= kkxCkyke  
Equation (15) can be written in a more compact form as 

)()()()1|(ˆ)|1( keSkdSkUSkkxSkkY edux +Δ+Δ+−=+  (16) 
The error over the prediction horizon is the difference between 
the prediction and the future set points 

)()|1()1( arg kykkYkE ett−+=+                                         (17) 
The cost function to be optimized is  

)()()1()1( kURkUkWEkEJ TT ΔΔ+++=                          (18) 
where W and R  are the positive definite weight matrices. The 
cost function in (18) is optimized subject to the constraints on 
the input, input increment and the output. The constraints are 
given as: 

1)( Mku ≤Δ  and  maxmin )( ukuu ≤≤                                  (19) 

The MPC framework leads to minimization of cost function in 
(18) under the constraints of equation (19). The above 
optimization was carried out using MATLAB optimization 
toolbox [4]. The function file quadprog was used for the 
constrained optimization. 

Simulation Results 
A comparison of the state feedback control and MIMO-MPC is 
shown in Figure 3. The initial TC is 3 and the final TC is set to 
be four. The response of state feedback (SF) and MIMO-MPC 
are compared with ideal response by computing figure of 
merit F . It is defined as area under the TC response normalized 
with respect to the area under the ideal TC response. It is given 
by: 
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The comparison of figures of merit F for the two methods for 
different noise levels are shown in Table 1. 
Percentage of noise a Figure of merit (F) 

State Feedback MIMO-MPC 
0 96.90 97.22 
1 95.47 96.83 
3 94.42 95.97 
5 93.79 94.41 

Table 1. Comparison of figures of merit for SF and MIMO-MPC 

Conclusion 
In this paper, we proposed a state estimator/state feedback 

solution to TC control. Simulation results have shown that the 
new methodology works better than the conventional PI 
controller with or without a Smith Predictor.   
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Figure 4. TC control loop response 
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