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Abstract 
Canon has newly developed a transfer system that utilizes a 

pad as a transfer process, and adopted it on a small color laser 
printer, LBP5050. During transfer process, it is necessary to 
provide an enough transfer electric field to toner as regulating 
scattering caused by pre-transfer and discharge marks by 
separating discharge. This report clarifies that, with the 
conventional roller transfer system, it is necessary to minimize an 
upstream tension nip width, and maximize a physical nip width 
and downstream tension nip width in order to achieve an optimal 
condition. Also, by comparing the pad transfer system and the 
roller transfer system in their abilities to transfer, this report 
estimates problems that could occur in minimizing the size of 
devices with the roller transfer system and concludes, with the use 
of pad transfer system, those problems can easily be resolved. 
Ultimately, the pad transfer system is superior in its compactness 
and image quality to the roller transfer system.  

Introduction 
Canon released a compact, user-friendly, and energy efficient 

A4 color laser printer, LBP5050 on May 2008. Its innovative 
features include a 4-sequential tandem engine utilizing an 
intermediate transfer belt (ITB), S-toner, single component 
development system, on-demand fuser system, and pad transfer 
system. Table 1 below show the basic specifications of the 
LBP5050. Figure 1 illustrates the cross section of the LBP5050. In 
order to minimize the size of printer, the new technology, pad 
transfer system, is installed on the LBP5050 for the first transfer 
process. This transfer system utilizes a resin sheet and foam rubber 
pad which supports the resin sheet, and replaces the traditional 
roller transfer system. The pad transfer system is developed by 
analyzing the mechanism of roller transfer system, and considering 
conditions required to achieve the best transfer performance. This 
report explains reasons why the development of the pad transfer 
system, enabled by simulating the analysis of roller transfer 
system, came into play and also compares transfer performance of 
the pad transfer system and roller transfer system.  

Pad Transfer System 
Figure 2 illustrates the cross section of pad transfer unit 

which is part of the first transfer system of LBP5050. A pad 
transfer unit consists of a sheet, pad, sheet holder, pad stay, and 
pad holder. The sheet is fixed at the pad stay by the sheet holder. 
The pad stay is fixed at the pad holder, and the location of the pad 
transfer unit to an Organic-photoconductor drum (OPC drum) is 
determined by the location of the pad holder. By pressing the pad 
holder toward the OPC drum, the bendable sheet will be 
sandwiched between an elastic pad and ITB, and create transfer 
nip. Since ITB slides on the sheet and requires charge to retain the 

toner on its surface, its material uses slidable and conductive 
resins.   

Figure 3 is an illustration of the shape of the transfer nip 
calculated by structural analysis. In the figure, the cross mark 
stands for the location of the surface of OPC drum right under the 
central point of OPC drum. In the pad transfer system, it is 
possible to control the width where the sheet and ITB contact by 
changing the shape of the pad and sheet, and arranging where they 
locate without changing the thickness of pad transfer unit. 

Table 1 Specifications of LBP5050 
Type Desktop color laser printer 
Printing method Electro-photography 

Photoreceptor Organic-photoconductor 
drum 

Print speed B/W: up to 12ppm (A4) 
Color: up to 8ppm (A4) 

Warm-up time About 25s from power on 
Recovery time About 0.5s from sleep state 
Typical Electricity 
Consumption 1.47kWh/week 

Media size (W x L) A5 to 215.9 x 355.6mm 
Media weight 60 to 220g/m2 
Dimensions (W x D x H) 401 x 452 x 262mm 
Weight Approximately 16kg 

 

 
Figure 1. Cross-section of LBP5050 
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Figure 2. Cross-section of pad transfer unit 

 
Figure 3. Nip shape calculation result of pad transfer system 

Roller Transfer System Simulation 
First, this will examine the mechanism of the traditional roller 

transfer system, and find out what conditions will meet the best 
transfer performance quality. 

Nip Shape 
In a roller transfer system, the first transfer process is 

composed of an OPC drum, ITB, and transfer roller. Figure 4 
shows the result of structural analysis where these elements are in 
contact. The cross mark in the figure represents a point right under 
the central point of OPC drum. In general, the transfer roller is 
placed at the central point of the OPC drum and shifted toward the 
process direction. This report calls this state ‘offset’. 

Figure 4 illustrates the result when the offsets are 0.5mm and 
2.5mm respectively. The width where the OPC drum and ITB are 
in contact is shorter than that of the transfer roller and ITB in 
contact. This is because foam rubber which composes a transfer 
roller is soft whereas the OPC drum is made of aluminum.  

Figure 5 exhibits a contacting state of Figure 4. The state can 
be divided into three regions. (1) shows where only an ITB and 
transfer roller are in contact, (2) shows where all the three 
elements: transfer roller, ITB, and OPC drum are in contact, (3) 
shows where only a transfer roller and ITB are in contact. This 
report defines (1) as upstream tension nip, (2) as physical nip, and 
(3) as downstream tension nip. According to Figure 4, upstream 
tension nip, physical nip, and downstream tension nip are 0.4mm, 
0.2mm and 0.9mm respectively in width when an offset is 0.5mm, 
0mm, 0mm and 1.6mm respectively when the offset is 2.5mm.  

Nip Shape Influence on Image Quality 
Electric field simulation is applied to the nipped region 

obtained in Figure 4. The electric field simulation considers 
electrical conductivity based on Ohm's law [1]. 

Figure 6 illustrates an electric field between an OPC drum 
and ITB. The horizontal axis represents a position coordinate 
supposing the cross point is the original point in Figure 4. In the 
upper nipped region(x<0), an electric field is higher when the 
offset is 0.5mm than the one when the offset is 2.5mm. This is 
because the transfer roller is set in the upstream and electric 
charges that were put from the upstream tension nip move to the 
upstream in ITB.  In the upper nipped region, an electric field 
between an OPC drum and ITB transfers toner. As a result, when 
the offset is 0.5mm, it is more likely that toner is transferred from 
an even upper region. In order to reduce the scattering during this 
process, it is necessary to minimize the width of the upstream 
tension nip. 

 
Figure 4. Calculation results of nip shape 

 
Figure 5. Schematic illustration of nip region 

 
Figure 6. Electric field between OPC drum and ITB 
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In addition, it is clear from Figure 6 that an electric field is 
the strongest at physical nip when the offset is 0.5mm. At the 
physical nip, all the three elements, OPC drum, ITB, and transfer 
roller get together and an air gap becomes the smallest. 
Consequently, the electric field becomes very strong. On the other 
hand, when the offset is 2.5mm, its peak reaches only about one 
third of that of the 0.5mm offset. This is because when the offset is 
2.5mm, the air gap still remains among an OPC drum, ITB, and 
transfer roller. The physical nip strongly influences a transfer 
electric field, and it is essential for enhancing transfer efficiency to 
create enough physical nip. 

Figure 7 displays the electric charge density in ITB when the 
offset is 0.5mm and no discharge is taking place in terms of 
transfer bias. The horizontal axis means an x axis. Seen in the 
figure, the electric charge density sharply increases from x=            
-0.4mm. It is obvious from Figure 4 that this is the point where the 
ITB and transfer roller begin to contact and where the upstream 
tension nip starts. After that, it reaches its peak around 0.0mm, 
which is physical nip. Then it decreases gradually till x=1.2mm 
which is the end of the downstream tension nip.  The next Figure 8 
shows an electric field in the transfer roller by arrow when the 
offset is 0.5mm, and the field represents flows of the electric 
current. In Figure 8, a current from the downstream tension nip to 
the upstream tension nip is observed. This is because ITB with 
positive charges estranges from the OPC drum and the voltage 
rises in the area. According to the detailed examination, the 
electric charges put into ITB from the transfer roller in the upper 
nipped region are advected to the lower nipped region along with 
the ITB. After returning to the transfer roller in the lower nipped 
region, the charges go back to the upper nipped region as shown in 
Figure 8. Therefore, the charges circulate in the process.  

Figure 9 is a magnification of the electric field in the lower 
nipped region in Figure 6, and the broken line stands for Paschen’s 
curve. The horizontal axis represents the gap length between an 
OPC drum and ITB. In Figure 9, an electric field in the lower 
nipped region is higher when the offset is 0.5mm compared to 
when the offset is 2.5mm. This is because there are more charges 
put into ITB from the transfer roller at physical nip. Additionally, 
since the width of the downstream tension nip is short, the charges 
are not able to return from ITB to the transfer roller in the lower 
nipped region. A high voltage in the lower nipped region 
contributes to separating discharge. As seen in Figure 9, after the 
100μm gap when the offset is 0.5mm, an electric field curve 
surpasses Paschen’s curve, resulting separating discharge. It has 
already been known from our experiences that discharge which 
occurs after 100μm is abnormal discharge and leaving discharge 
marks on toner image. In order to prevent separating discharge in 
the lower nipped region, it is vital to give an enough downstream 
tension nip.  

In conclusion, to obtain the best transfer performance, the 
upstream tension nip needs to be small and there needs to have 
enough physical nip and downstream tension nip. 

 

 

 

 

 
Figure 7.  Calculation result of charge density in ITB when offset is 0.5mm 

 

 

 
Figure 8. Calculation result of electric field in transfer roller when offset is 
0.5mm 

 

 
Figure 9. Electric field between OPC drum and ITB in downstream nip region 
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Comparison of Pad Transfer System and 
Roller Transfer System 

Next, this report will compare a pad transfer system with two 
roller transfer systems in their performances. The three kinds of 
system are used in this comparison: a pad transfer system and 
roller transfer systems with a 14mm roller and a 10mm roller. 
Figure 10 illustrates measures of each system. The roller transfer 
system with a 14mm roller is a conventional system. The roller 
transfer system with a 10mm roller is at the same height as the pad 
transfer system and is a miniaturized model designed for a small 
spaced place.  

Figure 11 and Figure 12 are the simulation results that 
illustrate relationships between offsets and transfer characteristics. 
In this simulation, as it is done above, the shape of the nipped 
region is calculated by structural analysis, and then an electric 
field simulation is utilized based on the shape. Now, this electric 
field simulation considers discharge [1]. Figure 11 shows distance 
of the longest discharge gap calculated by the electric field 
simulation. This is based on our experience that discharge marks 
by downstream discharge mentioned above originates in discharge 
which occurs in over 100μm long gap. From Figure 11, as the 
offset increases, discharge in the long gap disappears. This is a 
result of widening the downstream nip.  It is also shown in the 
figure that whereas the system with a 14mm roller requires a 3mm 
offset, the other system with a 10mm roller requires a 4mm offset. 
In the pad transfer system, since the contacting area between ITB 
and the sheet is large, an enough width of the downstream tension 
nip is obtained as shown in Figure 3. This reduces discharge in the 
long gap in a small offset. 

 Figure 12 shows relationships between bias and a maximum 
transfer electric field when the offset avoids long gap discharge in 
each transfer system. Calculations are done under the condition 
that offsets of each system are 3mm for the roller transfer system 
with a 14mm roller, 4mm for the roller transfer system with a 
10mm roller, and 1mm for the pad transfer system. The result 
shows the widths of physical nip of each system: 0.5mm for the 
roller transfer system with a 14mm roller, 0mm for the roller 
transfer system with a 10mm roller, and 0.5mm for the pad transfer 
system. From Figure 12, the roller transfer system with a 10mm 
roller can only create a low transfer electric field compared to the 
one with a 14mm roller due to the large size of its offset which 
shortens the width of physical nip. Since the area where ITB and 
the sheet contact is broader, the pad transfer system can easily 
obtain a high transfer electric field with regulating discharge in the 
long gap.  

Ultimately, there are no further potentials with roller transfer 
system to minimize the devices by miniaturizing the size of their 
rollers without leaving discharge marks. The only solution is to 
increase bias, but this is unfavorable in terms of designing transfer 
system. On the other hand, the pad transfer system enables 
broadening the area where ITB and the sheet contact with ease; 
thus, miniaturizing the devices will be attainable with the low 
possibility of leaving discharge marks and a high transfer electric 
field. 

 
Figure 10. Comparison of transfer system elements 

 
Figure 11. Relationship between offset and longest discharge gap 

 

 
Figure 12. Relationship between bias and maximum transfer electric field 

Conclusion 
We developed a new transfer system which adopted a pad. 

With this system, it is viable to miniaturize devises with keeping a 
desirable shape of the nipped regions.  
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