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Abstract 

This report describes simulation technologies for digital 
frontloading of two-component development process in 
electrophotography. Electrophotography entails using multi-
physics involving phenomena with yet unclear mechanisms such as 
air breakdown, tribocharging and powder dynamics. Thus, it 
requires much effort and many resources to develop 
electrophotography products. Numerical simulation is widely 
recognized as one of valid approaches to overcome these 
difficulties in product design. A tool for simulating the two-
component development process has been developed including 
particle motion calculation using the Distinct Element Method and 
electric filed calculation using the Finite Element Method. The 
tool working on PC clusters is equipped with force decomposition 
method as a high-efficiency parallel computation algorithm to 
reduce calculation time. In addition, GUIs, and an online portal 
for PC clusters has been developed to support product designers 
utilizing the simulation tool. Validity of the tool was confirmed by 
comparison of developed toner mass and developer mass on 
development roller with the experimental results. 
 
Introduction 

In product development of multi-functional copiers and 
printers, optimizations of electrophotography process parameters 
are required in advance of hardware design. The quality of the 
optimization determine the performance of the product and it also 
affects product development period and costs. Therefore, 
simulation technologies are used to reduce these efforts by digital 
frontloading, that is, to design parameters and verify performances 
virtually in prior to manufacturing [1]. Electrophotography entails 
using multi-physics involving phenomena with yet unclear 
mechanisms such as air breakdown, tribocharging and powder 
dynamics. Because no commercial tools to simulate these 
phenomena are available, developing of simulation tools and a 
system to support product designers utilizing the tools is important. 

In this study, a simulation tool of the two-component 
development process for digital frontloading has been developed 
including particle motion calculation using the Distinct Element 
Method (DEM) and electric filed calculation using the Finite 
Element Method (FEM). To overcome the difficulties in 
computation cost in the particle calculation, high-efficiency 
parallel computation algorithms were investigated and the force 
decomposition method [2] was employed. In addition, GUIs, and 
an online portal for PC clusters have been developed to support 
product designers utilizing the simulation tool. Validity of the tool 
was investigated by comparison of developed toner mass and 
transported developer mass on development roller with the 
experimental results. 

 
Simulation Method 
 
Two-Component Development Process 

Two-component development process consists of several 
separated functions; developer transport in auger screw system, 
transport on a development roller with a magnet inside, toner 
image formation in an electric field formed between development 
roller and photoreceptor. To simulate roller transport and image 
formation process and to evaluate the qualities of these process 
numerically, particle motion calculation using DEM are used. 

A schematic drawing of roller transport and image formation 
in development process is shown in Figure 1. Magnetized carrier 
beads with several ten microns in diameter form chain clusters 
(magnetic brushes) on a rotatory sleeve in the magnetic field 
created by a stationary permanent magnet. Toner particles with 
several microns in diameter electrostatically attached to magnetic 
bead brushes are transported to the development nip with rotation 
of the sleeve. A magnetic blade trim developers and form thin 
layer in advance of image formation in the development nip. In the 
development nip, electrostatic force acts on toners and they move 
to electrostatic latent images on photoreceptor surface to form real 
images. 
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Figure 1. Two-component development process 
 
 
Numerical Algorithm of Motion Calculation 

As mentioned above, it is required in the development 
parameter optimization to evaluate the qualities of development 
process. The qualities include, for example, developer mass on the 
sleeve, developed toner mass both in image and background, 
image degradation such as bead-carry-out, tail edge deletion and 
starvation, etc. One of possible methods to simulate these 
phenomena is DEM. In the DEM calculation, the following 
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momentum equation is solved for each carrier bead or toner 
particle. 
 

jjjm Fu =&& , gFFFFFF jajjdejmjcjj m+++++= , 

( j=1,…, N;  N: number of particles ), (1) 
 
where mj, uj, and Fj are mass, displacement vector, and applied 
force vector to the j-th bead, respectively. Mechanical contact 
force Fcj, magnetic force Fmj, electrostatic force Fej, air drag Fdj, 
attractive force Faj and gravitational force mjg are included in the 
applied force. Here, g designates the gravitational constant.  

The mechanical contact force was determined assuming the 
Voigt model. The elastic force in the normal direction at the 
contact point was estimated assuming the Hertzian theory and the 
force in the tangential direction was assumed to be proportional to 
the normal force. Viscous components of forces proportional to 
displacement velocity and viscous coefficient are added to these 
forces. 

The magnetic force Fmj acting on the j-th carrier bead with the 
magnetic dipole moment pj is given by the following expressions 
under the assumption that each bead behaves as a magnetic dipole 
placed at the center of the bead [5]. 
 

( ) jjmj BpF ∇⋅= . (2) 

 
The magnetic flux density Bj at the position of the j-th bead 

and magnetic moment pj are 
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where µ0 is the permeability of free space, µ and aj are the relative 
permeability and the diameter of the bead, respectively, and rkj is 
the position vector from the k-th to the j-th bead. 

The electrostatic force is estimated by the product of the 
electric field E and the charge of the developer. The electric field 
and the induced charge were determined by solving the following 
two coupled equations, the Gauss’s law and the conservation of 
charge. 
 

( ) ρφεε −=∇⋅∇ r0 , ( )
t∂

∂=∇⋅∇ ρφσ , (5) 

 
where φ is potential, ε0, εr, σ and ρ are permittivity in free space, 
relative dielectric constant, conductivity, and space charge, 
respectively. An iterative FEM was used to calculate the coupled 
differential equations. In addition, to consider electrical effects of 
developers and to estimate induced charge in the conductive 
carrier beads, the electric properties were distributed to the 
corresponding elements. That is, the calculation area was divided 
into many small elements in order to sham spherical carriers and 
toners by quadrilateral or hexahedron elements. Then, the 

dielectric constant, conductivity and space charge of the elements 
which belong to the carriers or toners are set to appropriate values. 
 
Parallel Computation Algorithm 

It is supposed to take more than a few weeks to compute 
electromagnetic interactions and motions of more than several ten 
thousand of carrier beads and toners. On the other hand, it should 
be reduced to less than several ten hours in practical use of 
parameter optimization in product development. Parallel 
computation using PC clusters is a useful technique to shorten 
computing time. 

Parallel methods of particle motion calculation are described 
in Figure 2. In the case of particle decomposition method as 
described in Figure 2 (a), calculations of interactions and motions 
of N/P (N: number of particles, P: number of processors) particles 
are assigned to each processor. In the figure, the interactions and 
motions of 8 particles are computed by 4 processors, that is, 
calculations of each 2 particles are assigned to each processor. 
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Figure 2. Parallel computation method 
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Figure 3. (a) Concept of particle decomposition method and (b) force matrix 
which defines a rule of interaction computation in force decomposition method 
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The concept of particle decomposition method is shown in 
Figure 3 (a). Each processor calculates interactions of the assigned 
2 particles with the other particles, then sum them up to obtain 
updated forces. Then, updated coordinates of particles are obtained 
by solving the equations of motion using updated forces. 
Subsequently, a processor communicates updated coordinates to 
all other processors for the computation of the next time step. The 
communication cost is large and it is supposed to limit the parallel 
efficiency. Calculation and communication time spent for the 
motion calculation of 28800 beads with magnetic interactions are 
shown in Figure 4 (a). 16 CPUs (Pentium(R) 4 2.8GHz) connected 
by GbE network were used for the calculation. In the figure, it is 
shown that computation time decreases proportionally with the 
increase in number of processors, on the other hand 
communication time is almost constant. This tendency tells us that 
the parallel efficiency will be saturated in the larger number of 
processors. 

Force decomposition method [2] was introduced to improve 
parallel efficiency, as is described in Figure 2 (b) and Figure 3 (b). 
In the method, motion calculations of N/P particles are assigned to 
each processor same as in the particle decomposition method. 
Meanwhile, calculations of the interaction forces are performed 
according to a force matrix shown in Figure 3 (b). The force 
matrix divides interactions between particles into groups, and 
assigns each group to different processors. For example, consider 
computations of interactions for particle no. 4 which is assigned to 
processor 2. Processor 2 is used for calculation of interactions with 
particles no. 0, 1, and 5 and processor No. 3 is for interactions with 
particles no. 2, 3, 6 and 7. The processor calculates partial sum of 
forces on the assigned interactions, then communicates among the 
processors to obtain total sum of forces. After calculation of forces 
and coordinates, the updated coordinate of the particle no. 4 is 
communicated to the processor 0 and 3 except the processor 1. The 
information of coordinate on the processor 1 is not required, 
because assigned group of interactions does not include the 
particle no. 4. Thus, the force decomposition method does not 
have to communicate between all processors, and it can decrease 
the amount of communications. Figure 4 (b) shows that the 
computation time decreases with the number of processors same as 
in the particle decomposition method, and that the communication 
time also decreases proportionally with the number of processors. 
As a result, parallel computation efficiency of 16 processors is 
76 % with the force decomposition method, while the efficiency is 
44 % with the particle decomposition method. 
 
Simulation Supporting System 

GUI was developed to support product designers utilizing the 
simulation tool. An example of GUI for simulation of roller 
transport of developer is shown in Figure 5 [4]. The procedure of 
the simulation is as follows: 

1. create 2D coordinates of development housing. 
2. calculate magnetic field around the magnetic roller from 

assumed magnetic flux distribution on the sleeve surface. 
3. execute developer transport simulation using results 

obtained in procedure 1 and 2. 
Creation of the data, execution of calculation and 

visualization can be done using the GUI. 
An online portal was also developed for product designers to 

utilize many simulators and PC clusters with no difficulty and 

special knowledge. The portal integrates cluster computer 
resources with heterogeneous operating systems and architectures, 
and then it provides virtually assembled one computer with secure 
environment [6]. 
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Figure 4. CPU time of magnetic interaction calculation (a) by the particle 
decomposition method and (b) by the force decomposition method 

 
Figure 5. GUI for developer transport simulation 
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Simulation Results 
Simulated result of image forming process near development 

nip is shown in Figure 6. Solid latent image was formed on the 
photoreceptor numerically and the motions of approximately 
38000 carrier beads and toners were calculated. Solid toner image 
on the photoreceptor surface in the post-nip is shown in the figure. 

Developed toner mass on photoreceptor in solid image 
forming processes were calculated using 2D model for various 
toner charge (-17.0 ~ -27.0 μC/g), and voltage between 
development roller and photoreceptor (100 ~ 500 V). Compared 
results of developed toner mass in the calculation and experiment 
are plotted in Figure 7. The results show good correlation of 
calculated and experimental values and it tells us that the tool is 
valid for optimization of development parameters. Otherwise, the 
calculated values are approximately 1.4 times larger than the 
experimental values, because electromagnetic interactions are not 
evaluated precisely by the 2D model. 

Developer mass on sleeve after trimming process by a 
magnetic blade was also calculated using both 2D and 3D models. 
The results for different gaps between blade and sleeve (0.3 ~ 0.7 
mm) and surface roughness of sleeve (2 ~ 4 μm in mean center 
line roughness) are plotted in Figure 8 comparing with the 
experimental values. Both 2D and 3D results show good 
correlation of calculated and experimental values and it is also 
shown that the 3D model give quantitatively precise results. 
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Figure 6. Simulated toner and carrier behavior near development nip 
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Figure 7. Comparison of calculated developed toner mass per area with 
experimental results 

Conclusions 
In this study, a simulation tool of the two-component 

development process for digital frontloading has been developed 
including particle motion calculation using the Distinct Element 
Method (DEM) and electric filed calculation using the Finite 
Element Method (FEM). The tool equipped with the force 
decomposition parallel method showed remarkable high efficiency 
compared with the particle decomposition method. In addition, 
GUIs and an online portal for PC clusters are supposed to valid for 
product designers utilizing the simulation tools. Validity of the 
tool was confirmed by comparison of calculated developed toner 
mass and developer mass on sleeve with the experimental results 
for various development parameters. 
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