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Abstract 
In 2000, the author and his team reported on the effects of the 

heat supply and the nip pressure from an aspect on energy supply 
to toner in Japan. [1] They found in typical roll fusers that 
influence of nip width enhancement, only by hardness reduction 
for back-up roll elastic layer without increasing pressing load, to 
fixing strength is very little. It provided that fixing strength 
contour in coordinates of heat supply and pressure. As a result, the 
contour diagram could derive design concepts and procedures for 
basic specifications in roll fusers. 

The prior study described above contains some outstanding 
issues, especially for the mechanism solving, which should be 
examined. The thermal energy represented by the heat supply was 
discussed in it. However, absorbed or latent heat should be 
examined and aspects from rheology should also be provided, for 
comparing pressing work. In the present report, the prior study is 
reviewed and further considerations are provided for the issues.  

Introduction  
Fusing is a process of energy supply by heat and pressing 

work in nip region. To know quantitative effects of them is quite 
important for designing electrophotographic fusers. To clarify its 
mechanism is also very important for making progress of the 
fusing technology. 

A few reports, which discuss toner fusing from a point of 
view on the energy supply, can be found, as far as the author 
knows. The present author reported one entitled as “Energy 
Analysis in an Electrophotographic Fusing Process” in 2000 
published in Japan. [1] Another report, entailed as “Thermal 
Analysis for Electrophotographic Toner During Fusing” in 1997 
published in Japan, contains toner thermal latent energy absorption 
property during melting. [2] 

The former literature provides relationship between the heat 
supply and the nip pressure from an aspect on energy supply to 
toner. And then a heat roll fuser design procedure is led. However, 
physical mechanism for toner melting and fixing is not mentioned 
very much. Therefore, the energy level of the heat supply is too 
much comparing to the pressing work. This is caused from a lack 
of the point of view for the thermal absorption in toner because of 
consideration without toner melting and fixing precise physical 
model. Fortunately, the later literature provides thermal absorption 
during melting.  

In this study, the former literature is reviewed and then more 
precise physical interpretation is provided using the result in the 
later literature. 

 

Fuser System 
Fuser system makes the toner fixed on a paper in an 
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electrophotographic process. The most important matter in the 
fuser system is obtaining sufficient fixing strength. Mainly two 
types of fuser principals are well known. One is non-contact fusing 
with xenon flashlights, another is contact fusing, in which heat and 
pressure are supplied to the toner. The former is called flash fusing, 
the later is called as a heat roll fusing.  

Figure 1 shows a schematic of a typical heat roll fuser, which 
is an example dealt with in this study. The system is mainly 
composed of a heat roll and a back-up roll. The heat roll has a thin 
surface layer made of fluoride resin on an outer surface of an 
aluminum cylinder for preventing toner offset. The surface layer 
behaves as a thermal resistance in the nip region. Therefore, the 
thin surface layer thickness is set around 20-40 μm. Back-up roll 
has a elastic layer, normally made of silicone rubber, on an outer 
surface of a metal core. Small amount of offset toner is generated 
even though the fluoride surface layer is formed on the heat roll. 
Therefore an offset toner cleaner is installed on the heat roll. The 
heat roll and the back-up roll are pressed against each other and 
rotated. Elastic deformation by pressing load of the back-up roll 
makes a nip region. Circumferential length, transit time and 
pressure of the nip region are called as nip width, nip period and 
nip pressure, each other. The nip period is normally several ms to 
several ten ms to obtain a sufficient thermal energy supplies to 
toner with high temperature as 130ºC or higher for the heat roll. 
The nip pressure is normally set as 5-50 N/cm2 for applying 
pressing work to the toner.  
 

Review for the Previous Work [1] 
The previous work [1] is reviewed in this section. Figure 2 

shows tested relationships between fixing strength, F, and heat roll 
temperature with the back-up roll elastic layer hardness. The heat 
and pressure balance is changed with the elastic layer hardness. 
However, the fixing strength is not varied even the elastic layer 
hardness changed. Therefore, the total energy to the toner by heat 
and pressing is considered as constant. 

Net heat for melting in unit area, Q, is shown in Eq. (1). 
 

∫=
T

dtqkQ
0
&  ------------------------- (1) 

 
Where, heat flux to toner, the nip period, transit time after nip 

region inlet and converting coefficient from heat supply to net heat 
for melting are denoted as q& , T, t and k, each other. The heat for 
melting can be represented by the heat supply, Q/k, if the 
coefficient, k, is assumed as constant. 

The pressing work in unit area for toner deformation, W, is 
shown in Eq.(2). 
 

LPW δ⋅=  --------------------------- (2) 
 
 Where, toner deformation and nip pressure are denoted as δL 
and P. The pressing work can be represented by the nip pressure, P, 
since in same fixing strength level, the toner deformation, δL, is 
considered as constant. 

Relationship between heat supply, Q/k, which represents the 
heat for melting, and pressing work, P, which represents the 
pressing work, is shown in Figure 3. Curves in Figure 3  satisfy the 
relationship shown in Figure 2, which means that the total energy 
of heat and pressing work is constant with changing the balance 

between the heat and pressing work. And they are calculated from 
varying the elastic layer hardness only. Equal fixing strength can 
be obtained on each curve. 

From this fixing strength contour line, some fuser 
specifications can be derived. Table 1 shows two examples of 

Figure3 . Contour Diagram of  Fusing Energy. 
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Figure 2. Fixing Strength with Rubber Hardness. 
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fusers. A is for high speed fusing and B is for relatively lower 
speed fusing. The energy balance of A and B fusers are 
corresponding to point A and B in Figure 3, respectively. 

Considerations on Energy Supply to Toner 
For the next step to make progress from previous work [1], 

following problems should be examined. 
1. Toner fusing is not physically modeled. 
2.  Converting coefficient from heat supply to net heat for toner 
melting, k, is assumed as constant. However, it is not assured and 
the level of k is not cleared. In other words, it is not clear that the 
energy levels comparison between the net heat for the melting and 
pressing work. 

Providing complete solution for these problems is hard. 
However, considerations for them are attempted in this report. 

Toner Fusing Physical Model 
It is well known that melt toner shows viscoelastic behavior. 

Figure 4 shows fusing model, which is from Four-Element Model 
in rheology field describing viscoelastic deformation. 

In this model, the heat supply affects to dash pots, which 
represent viscosity, and springs, which represent elasticity. This 
means that the heat affects toner melt properties and makes it 
soften. It is important that the heat is not heat supply, but 
absorption in toner. The problem No. 2 listed above is that the heat 
supply was used in evaluating thermal energy for fusing in the 
previous work. Evaluation of the absorbed heat and the pressing 
work are examined in the next section. 

The pressing force is applied to top and bottom terminals. 
Multiplication of the force (P if unit area) and deformed distance 
(δL) is derived as pressing work. 
 From this model, it is clear that the fusing consists of two 
functions. One is property softening by the thermal absorption. If 
only the thermal absorption is occurred, the fusing is not 
completed. Another indispensable function is deformation by 
pressing force. The former function is called melting and the later 
function is called fixing in the present report. 
 Thus, various combinations of melting and fixing levels 
provide same fixing strength. In extreme example tabled in Figure 
4, comparison between the heat roll and the flash fusing can be 
presented. For the heat roll fusing, the heat supply is small because 
of relatively low temperature application by heat roll, but higher 

pressure is applied in the nip region. On the other hand, for the 
flash fusing, the heat supply is very high by thermal radiation by 
flash lamp, but quite low pressure is applied only by toner’s own 
weight. 

Energy levels of heat supply, net heat for melting 
and pressing work 

The energy levels at the condition of point A in Figure 3 are 
estimated in this section for a trial example. 

From the point A in Figure 3, the heat supply is 6.8x103 J/m2 
Figure 5 shows an enthalpy change with temperature of a toner, 
which was published in Japanese literature [2]. In the present 
report, this data is used for rough estimation of the toner thermal 
absorbed energy level. Tg in Figure 5 means glass transition 
temperature of the toner. Toner melting behavior appears in the 
higher temperature than Tg. An extended line from a region below 
Tg, which is shown as dashed line, means an enthalpy without 
affection by meting. Therefore a difference between enthalpy with 
melting, shown as solid line above Tg, and the dashed line shows 
the level of the absorbed heat used for melting. In another 
literature [3], interface temperature between toner and paper at the 
end of the nip region is calculated as around 125 Co , which 
conditions are 190 Co  of heat roll temperature and 14 ms of nip 
period. Therefore average temperature in the toner layer is 
assumed roughly as 140 Co  in the present report. From the data 
in Figure 5, the toner absorbed heat at 140 Co  is led as 0.85x105 
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J/kg. Assuming toner fused solid layer thickness on paper as 5μm, 
unit kg toner covers 180 m2. Therefore, absorbed heat for melting 
can be derived as 470 J/m2 (= 0.85x105 (J/kg) / 180 (m2) ). 
Comparing the heat supply and the absorbed heat for melting, 
quite large difference is found. It is derived that the absorbed heat 
for melting is only 7% of the heat supply in this estimation. It is 
surprising that the most thermal energy supplied to toner is not 

used for melting. 
Figure 6 shows a model for deriving the pressing work. Work 

can be derived from an applied force and object’s moved distance. 
Multiplication of the force (P if unit area) and deformed distance 
(δL) is resulted in the pressing work for fixing. The distance can be 
estimated between toner heights before and after fixing. It is 
assumed as 20μm (20x10-6 (m) ), derived from the difference 
between 25μm of unfixed and 5μm of fixed states. For the nip 
pressure, P, 3.3x105 N/m2 is applied from the point A of Figure 3. 
Thus, the pressing work is derived as 6.6 Nm/m2  
(=3.3x105 (N/m2) x 20x10-6 (m) ). 

Comparing to the absorbed heat for melting, the pressing 
work is quite small. It could be considered that it means that 
functions of heat and pressing are different as written in foregoing 
section. In the prior study[1], the author supposed that total energy 
of heat and pressing work determined the fusing. However, it may 
be revised so that the energy should be evaluated separately. 

Conclusions 
The prior Japanese study [1] for energy in fusing has been 

reviewed. And then, the model for heat and pressing work has 
been examined in the present report. As a result, the followings are 
supposed. 

The absorbed heat for the toner melting is surprisingly 
smaller than the heat supply. And, the pressing work is much 
smaller than the absorbed heat. It is supposed that functions of heat 
and pressing are different and it might be hard to discuss about the 
total energy of the heat and the pressing work for determining the 
fusing. 
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Figure5 . Enthalpy Change of Toner. 
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