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Abstract

A new toner-based electrographic development process is
presented, which we call "Momentum-Control Scavenge-less
Jumping Development” (MC-SJD). It is similar to conventional
jumping development in that an AC waveform is used to drive
charged toner particles across a small gap from a toned donor roll
towards a photoreceptor with a latent electrostatic image. Rather
than allowing toner particles to impact the photoreceptor and
potentially damage any existing toned image, a four-phase
waveform is used to reduce the normal component of the toner's
momentum prior to its impact with the photoreceptor. The toner
thus forms a nearly static cloud of charged particles near the
latent image, which then gently develops onto the photoreceptor.
The MC-SJD process is equally applicable to both single and
dual-component development subsystems. This approach is
particularly — useful  for image-on-image color printing
architectures, but may also help improve the image quality of
monochrome and conventional color prints.

Introduction

Using the Xerox Particle Simulation Environment (XPSE) [1-
3], we invented a new flavor of dry-power jumping development
for electrographic print engines. Although jumping development
has been used successfully in electrographic print engines for
many years, it is generally not considered for high-quality image-
on-image printers due the inherent scavenging nature of the
process. By “scavenging”, we mean the process by which
impacting toner particles disturb previously deposited toned
images on a photoreceptor. Other scavenge-less development
subsystems do exist. For example, the Hybrid Scavenge-less
Development (HSD) process uses thin charged wires within the
development nip to create “gentle clouds” of toner particles [4].
Unfortunately, such systems can experience long-term reliability
issues due to contaminates coating the wires over time.

In this paper, we modified the AC waveform that is normally
used to drive toner back and forth across the air gap in a jumping
development nip. The technique relies on a detailed understanding
of the toner dynamics within the gap. For that, physically realistic
simulations of the development process have proved invaluable.

A brief overview of XPSE is presented, and some details of
the simulation technique discussed. Examples will be shown based
on a small, highly detailed, kanji character. Realistic particle size,
charge, and adhesion distributions are used by the simulation code.
The ultimate goal of these studies is to understand the interaction
between a jumping powder cloud, and any pre-deposited (i.e.,
toned) images on the photoreceptor.

NIP25 and Digital Fabrication 2009

Technical Program and Proceedings

Overview of XPSE

XPSE is a set of C™" libraries and computer programs that are
designed to enable the simulation of xerographic subsystems; such
as erasure, charging, exposure, development, transfer, and fusing.
The underlying code uses the particle-in-cell technique [5] to
model individual toner particles in three spatial dimensions and
time. Appropriate forces are calculated which describe the effects
of collisions with other particles and geometric objects. The
software architecture is fully object-orientated and can be thought
of as an “operating system for particles”. As the simulation time
progresses, events (e.g., particle-to-particle collisions) are
detected, posted, and subsequently processed by registered event
handlers (e.g., the force between two colliding particles is
computed).

XPSE provides a small three-dimensional CAD-like class
library where all geometric objects (e.g., blocks, plates, cylinders,
and spheres) are “physically active”. Moving donor and receiver
surfaces are available for a number of development subsystem
models. Simulations of transfer and fusing are evolving to include
detailed air breakdown effects and pressure-driven flow of melted
toner layers on paper. Many aspects of toner, carrier bead, and ion
particles can be represented, including: stochastic size and charge
distributions, inter-particle conduction, magnetic interactions (i.e.,
for simulating the formation of magnetic brushes), particle-particle
cohesion, and particle-boundary adhesion. The particle cohesion
and adhesion models support a variety of force components such
as: hard-core collisions, complex short-range forces due to charged
surface patches and Van der Waals effects, induced electrostatic
and magnetic polarization, and friction. Long-range electrostatic
fields are solved on finite-element grids and blended with shorter-
range forces that are calculated within the event-handler functions.

By assembling XPSE components (e.g., finite-element grids,
collections of toner particles, geometric objects, numerical field-
solvers, efc.), it is possible to create digital simulators that emulate
the behavior of specific pieces of hardware. These constructs may
be thought of as virtual fixtures, and can be used by scientists and
engineers to supplement experimentation on conventional physical
fixtures. XPSE is suitable for problems where the number of cells
and particles are on the order of 10° to 10°. Run times vary widely
with the problem being solved, but can range from minutes to tens
of CPU hours on a modern PC/Linux workstation.

It should be noted that XPSE is capable of modeling far more
complex xerographic systems than those presented in this short
paper. A multilayered photoreceptor model is available that
supports a number of virtual imagers (e.g., a conventional or
VECSEL laser ROS, and a LED-bar array). Detailed exposure
profiles can be computed within the virtual photoreceptor’s
charge-generation layer; and the resulting free charge transported
to its surface using realistic transport physics. Several variations of
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field-dependent quantum efficiency and electron-hole mobility
models are supported by the underlying simulation codes.

Hybrid Scavenge-less Development

Consider the square waveform shown in figure 1 that drives
the inner-gap wire(s) in an HSD subsystem. The potentials are
referenced to the donor electrode. In a practical apparatus, there
will also be a DC bias potential that is applied between the donor
and receiver (i.e., photoreceptor) electrodes. For purposes of this
discussion, assume that the donor surface is located just below the
wire in the -Z direction, and the receiver’s surface (which happens
to be a photoreceptor) is located some distance way from the wire
in the +Z direction.
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Figure 1. Waveform for Hybrid Scavenge-less Development. Note that
this waveform is applied between the wire and donor, not between the
donor and receiver! The diameter of the wire is approximately 70 um.
The air gap is of O(500 um), so the schematic is not to scale.

Assuming negatively charged toner is available on the
donor’s surface, the positive potential of phase P, attracts toner
onto the wire from below. Note that it also attracts toner that is
already in the nip that is moving towards the receiver’s surface,
thus preventing high-energy particles from impacting toner that
has already developed. During phase P,, the wire reverses polarity,
so the strong local electric field ejects toner particles away from it.
Approximately one-half of the toner returns to the donor, but the
other half moves towards the photoreceptor. By picking the correct
magnitude (e.g., ~2000 Volts) and frequency (e.g., ~10 kHz) of the
wire’s driving potential, a significant number of toner particles can
be persuaded to form a near-stationary cloud relatively near to the
photoreceptor. As a charged latent image moves though this toner
cloud, particles are attracted to the charged areas that form the
latent image. As the toner cloud carries little kinetic energy near
the photoreceptor, it has minimal effect on already developed
particles.

The Momentum-Control Waveform

The trick to obtaining a powder cloud that behaves in a
similar fashion to HSD, but without the use of wires, is to apply a
four-phase signal across the donor and receiver’s surfaces, as
illustrated by figure 2.

234

Waveform for MC-SJD

. period = frequency-! |

Grounds d Receirsr
Donor “stops” toner -

Lol b omientimae

P, " (50,80 Y]
) ~ue charged toner _ o

= Asestie,

] pa Danor (-250%)

I .

£ | Donor attracts toner H

O H

-g i Time

S P |

1 |

Donor "balances” loner

Dionor ‘injects toner

P

Figure 2. Waveform for Momentum-Control Development. The potentials
are referenced to the donor electrode, so negative values drive particles
up towards the receiver, while positive values return particles back
down towards the donor.

During phase P, negatively charged toner on the donor’s
surface is driven into the air gap. The magnitude of the applied
potential is rather high, but its duration is kept short (e.g., ~25 us).
The idea is to only introduce toner into the air gap, not to transport
it across to the photoreceptor. In phase P,, reversing the polarity of
the signal forms a retarding field.

The magnitude and duration of this pulse slows the
advancing wave of toner and effectively halts it before most
particles impact the receiver. This is the “momentum control”
(MC) aspect of the invention. Taken together, the first two phases
of the MC waveform emulate the first phase of the HSD
waveform. That is, a near-stationary cloud of toner particles is
generated near the receiver’s surface. In order to improve the
development efficiency of the system, a small negative potential P,
is applied for few hundred microseconds. The imposed
electrostatic field tends to hold the powder cloud near the receiver
as the latent image passes though it. The reason that the sign of the
P; potential is negative is to counter-act the space charge of the
(negative) toner particles within the gap. Finally, a low-value
positive pulse P, is applied that returns any undeveloped particles
back towards the donor’s surface. This resets the cycle and the
process repeats.

As a practical matter, a sharp waveform is not required. The
signal shown in figure 3 is similar to what can be applied with
reasonable effort. Of particular concern is that the large initial
pulse P; does not cause significant air breakdown to occur. When
this happens, undesirable artifacts are observed in the final
developed image. This limits the magnitude of the applied electric
field to less than ~3.0 Volts/um. If the toner-to-donor adhesion is
too high, it may not be possible to eject enough toner into the air
gap to achieve acceptable mass development for some chosen
process speed. We believe that this limitation can be overcome by
a careful selection of the donor material’s coating.
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Figure 3: A practical MC-SJD waveform. The large negative pulse ejects
particles from the donor’s surface into the air gap, while the large
positive pulse stops the particles before they impact the photoreceptor.

Figure 6, which is located near the end of this paper, shows a
time sequence of eight images taken from an XPSE simulation of
MC development. The pictures are orientated so that one is
looking into a small section of the development nip. The donor
surface is represented as the lower green plane, and the receiver as
the (mostly) blue upper plane. A charged latent image of a 4-point
Kanji character, which shows up in orange, has been written onto
the receiver. The time sequence depicts the creation of a toner
cloud during the first cycle of the MC waveform. The cloud is
formed during the first 75 ps of the cycle. Approximately halfway
though the cycle (i.e., 125 - 220 ps), the cloud is essentially
stationary. During this period, toner particles collect onto the less-
negatively charged regions of the latent image. The latter images
(i.e., 350 — 540 ps) show the cloud retreating back onto the donor
surface in preparation for the next cycle.

The image is approximately 75% complete after the first MC
cycle. Given that a typical nip transit time is of O(5 - 10) ms, it is
possible for the latent image to experience several MC cycles as it
traverses the nip region, thus ensuring adequate development has
taken place. Figure 4 shows a developed layer of toner particles
covering the orange latent image. Note the lack of background
particles and the reasonably good coverage of the latent image
area. As the simulation was only allowed to run for 2 ms, which is
considerably less that a typical nip transit time in a production
printer, the development process has not yet reached completion.
Simulations indicate that MC-SJD can produce images as good as
or better than the HSD process.

The main advantage of wires is that they produce very high
local electric fields near the donor’s surface, thus they have no
problem dislodging nearly all toner on the donor roll. The MC-SJD
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process must rely on lower AC fields to pull toner from the donor
roll. Although conventional jumping systems often have high
development efficiency, the MC system tends not to scavenge
toner from the donor and thus has more trouble generating dense
powder clouds in the nip.

Figure 4: Simulated development of a 4-point Kanji character using 4 um
toner. The simulation was terminated after approximately 2 ms of run
time. As this is considerably less than a typical nip’s transit time, the
image has not yet fully developed.

Experimental Verification

A series of experiments were carried out on a small test rig to
verify how well MC-SJID performs in practice. The fixture shown
in figure 5 consists of a donor roll that is loaded with a uniform
layer of negatively charged toner particles using a magnetic brush.
An aluminum cylinder serves as a surrogate for the photoreceptor.
To determine how severely a conventional jumping system
scavenges toner, a square AC waveform of several hundred Volts
is applied between the donor and receiver. The donor is negatively
biased for a short period of time, which causes a small solid patch
to develop on the receiver. While keeping the AC waveform in
place, the DC bias field is reversed. This tends to move toner off
the receiver and back onto the donor. As the magnitude of the DC
bias field is chosen so as not to overcome the adhesion of the toner
particles stuck to the receiver, only toner that has been hit by
sufficiently energetic particles will be dislodged and return to the
donor. The mass density of the patch is monitored over time using
an optical sensor. One typically observes that the mass of the patch
decreases very rapidly during this mode of operation, and the
patch is essentially gone after only two or three “cleaning cycles”.
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Figure 5: Experimental apparatus to verify the effectiveness of MC-SJD.
The donor roll is to the left, and the aluminum receiver roll is to the right.
An AC field, as either a simple jumping waveform or the move complex
MC waveform, is applied between the two rolls. If the donor has a
negative DC bias, negative toner tends to develop on the receiver. If the
donor is positively biased, toner tends to return to it.

In contrast, if the AC jumping waveform is replaced by the
MC waveform, a patch will still develop in the presence of a
positive DC bias but it will likely have a lower mass density.
However, when the DC bias field is reversed, the patch will remain
in place for several hundred cleaning cycles.

Conclusion

Though the use of physically realistic computer simulations,
we gain insight into how the momentum-control waveform drives
charged toner particles across an electrographic development nip.
Although equivalent hardware experiments can be performed, it is
often difficult to control unwanted side effects and isolate the
underlying physics of such complex processes. Of particular note
is the observation that the principle driver of scavenging in image-
on-image development systems is the normal component of
momentum of the toner cloud, at least near the photoreceptor. The
relation between their charge, the applied electric field, and forces

0.0220 ms
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imposed by air drag largely determines the mean speed of the
particles. As the size of a particle is reduced, its mass (and thus
momentum) falls as the inverse cube of its radius. This implies that
relatively small toner (e.g., in the 3 to 4 pm range) is highly
advantaged for this particular technology. The remaining challenge
is to manufacture donor surfaces with reduced particle adhesion to
allow for sufficient development in high-speed printers.
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Figure 6: Simulated time sequence of a single cycle of the MC waveform.
The cycle begins at time 0 us. A powder cloud is generated as the toner
is pulled from the donor’s surface into the air gap, peaking after ~100 us.
During the central part of the cycle, the cloud is relatively stationary and
has little kinetic energy. The latter pictures show the cloud returning to
the receiver’s surface, thus resetting in preparation for the next cycle.
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