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Abstract 
Demand on material properties of toner especially viscosity 

and elasticity are different depending on whether fusing is 
accomplished by contact or non-contact means. In roll fusing 
(contact fusing) toner particles are subjected to pressure and heat 
for dwell time dependent on the roll speed and nip length. The 
assembly of toner particles goes through compression while the 
layer is being heated. The molten particles are subjected to shear 
which results in changes in viscosity and elasticity. Subsequently 
as the toner particles on the media separate from the roller, they 
go through stretching at fairly high rates depending on the speed 
of the roller. Difficulties arise when heat is applied to the media, 
which leads over drying of the media and causes difficulties in 
media handling. The pressure distribution can cause image 
deformation and media curling. In non-contact fusing, radiant 
fusing, flash fusing, microwave fusing or steam fusing, toner 
assembly is subjected to intense heat without external shearing or 
stretching.  Coalescence and spreading of the toner particles take 
place quickly and efficiently. Adhesion of toner to the media is 
expected to be stronger. Non-contact fusing is contrasted with 
contact fusing models and compared with experiments. 

Introduction 
In a two component developer system, toner is developed on 

photoreceptor, transferred to media and toner is fused either 
through the application of thermal energy from a roller, contact 
fusing or by flash, radiant, microwave energy. In contact fusing 
and fixing an array of toner particles are either subjected to 
pressure alone at ambient temperature conditions or to both 
pressure and temperature. When pressure alone is applied at 
ambient conditions to facilitate adhesion and fixing of toner to a 
medium, it is termed cold fixing of toner. A toner to be selected for 
cold pressure fixing flattens on application of force and invariably 
yields resulting in improved adhesion to a medium. The medium is 
fed through a set of steel rollers. The rollers may be skewed in 
order to apply the pressure uniformly. Rolling contact on visco-
elastic layer has been investigated for decades [1]. Toner particles 
when subjected to deformation behave elastically or in an elastic-
plastic manner depending on flexibility of the macromolecule 
particle size, molecular weight and rate of deformation [2]. Critical 
stresses of brittle and ductile particles can be analyzed using 
Hertzian elastic model and its predictions can be compared with 
experiments on single toner particles and their compression 
molded aggregates [3]. Composite modulus and yield stress of 
toners were analyzed by using law of mixtures and compatibility 
between the two components making up the composites [4]. 
Adhesion of particles such as toner particles to surface of a 
medium can be modeled by JKR and DMT models. In 1971, 
Johnson, Kendall and Roberts (JKR) [5] proposed a new theory 
that accounted for adhesion between two elastic bodies. They were 
motivated by experimentally measured contact areas that were 

larger than predicted by the Hertz theory at low loads, and by the 
observation of finite contact area at zero applied 

load.  This minimum load can be called the pull-off force or 
critical load Pc, and is given by: 

 

 (1) 

 
where γ is the Dupré energy of adhesion, or work of adhesion 

When surface forces are short range compared to the resulting 
elastic deformations (i.e. compliant materials, large sphere radii, 
and strong, short-range adhesion forces), the JKR model describes 
the contact area accurately. 

Derjaguin, Muller and Toporov (DMT) [6] derived a separate 
expression to include adhesion in the contact of elastic bodies. 
They assumed that the deformed contact profile remained the same 
as in the Hertz theory, but with an overall higher load due to 
adhesion. The pull-off force is given by  

 

 (2) 

 
The opposite limit (i.e. stiff materials, small sphere radii and 

weak, long-range adhesion forces) corresponds to the DMT 
regime. 

It is convenient to utilize a non-dimensional physical 
parameter to quantify these limits and the cases in between. Often 
referred to as Tabor’s parameter μT, this transition parameter is 
defined as 

 

 (3) 
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where z0 is the equilibrium separation of the surfaces. The 
spatial range of the adhesion forces is assumed to scale with z0, as 
in the case of the Lennard–Jones potential, for example, where z0 
is the only length scale in the definition of the potential. Tabor’s 
parameter is physically equivalent to the ratio between the normal 
elastic deformation caused by adhesion (i.e. in the absence of 
applied load) and the spatial range of the adhesion forces 
themselves[7]. 

In fusion of toner particles under temperature and pressure, 
toner-medium(paper) interface temperature is in the neighborhood 
of 120C and shear rates are in the vicinity of 1000Sec-1 The toner 
particles undergo coalescence and spreading.  The size of the 
primary particles and the growth of agglomerates are determined 
by the rate of collision and subsequent coalescence. Qualitatively, 
at sufficiently high temperature, particles coalesce faster than they 
collide, and collisions of particles will result in a spherical large 
particle. However, at lower temperature, particle coalescence is 
negligibly slow, and a collection of smaller attached particles 
(aggregates) is produced. The linear rate law for decrease in the 
surface area was developed by 

Koch and Friedlander [10]as 
 

 (4) 

 
where a is surface area of particles, asph is surface area of 

sphere of same volume, and τf is characteristic 
coalescence time. The characteristic coalescence time 

calculated from a solid-state diffusion model. 
 

 (5) 

 
where Tp is the particle temperature, N is the number of 

atoms in the particle, D is the diffusion coefficient reported as an 
Arrhenius function of the temperature, and σ is the surface 
tension. For droplets of equivalent sizes, the coalescence time is 
given by 

σ
η

τ p
f

d
=  (6) 

 
where dp is the diameter of the particle, η is the temperature 

dependent viscosity.and σ is the surface tension. The above 
equations provide a reasonable quantitative description of small 
particles coalescence [11] 

Under typical flash fusing, top surface of the toner is 
subjected to considerably higher temperatures than the melt 

temperature of the toner [12]. Compared to roll fusing, a contact 
fusing, flash fusing a non-contact fusing process, the toner 
temperature is in the neighborhood of 160C compared to 120C in 
roll fusing. Viscosity of the toner is in the 30-70 PaS in flash 
fusing fix compared 1000-10,000PaS in toner temperature in roll 
fusing.  Lower viscosity in flash fusing allows faster coalescence 
than in roll fusing. . 

Method and Materials 
Viscosity and relaxation modulus  of polyester and styrene 

butadiene toners were characterized by compression molding them 
and shearing them dynamically in an Ares rheometer [8].  

Result and Discussion 
The elastic and viscous modulus at various frequencies were 

subjected to inverse Fourier Transform or numerical 
approximations to get relaxation modulus as function of time.  

Figure 1 data can be clearly used to show that as the 
molecular weight is decreased, relaxation modulus rapidly 
decreases with time. The slope of relaxation modulus with time 
can be used to get relaxation time. If the relaxation time is lower 
than the process time (dwell time), fusing is less dependent on 
elasticity of a toner. On the other hand if relaxation time is greater 
than the dwell time, elasticity plays a significant role and slows 
down coalescence time. 

 
 

 
Figure 1 shows that relaxation modulus increases with increase in molecular 
weight from a to b to c and to d. 

Binder styrene butadiene copolymer shows viscosity 
dependence on molecular weight linearly below entanglement 
molecular weight and power law dependence above entanglement 
molecular weight. 
 
 
 
 
 
 
 

Relaxation modulus of styrene butadiene at120C
for different MW

1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07

0.001 0.01 0.1 1
t sec.

G
(t)

 P
a

Ga(t) Pa
Gb(t)Pa
Gd(t) Pa
Ge(t) Pa

640 Society for Imaging Science and Technology



 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 shows molecular weight dependence on viscosity in, styrene 
butadiene η∝ M for M<Me, nM∝η nth power of M 

Polymer chains get entangled above a certain molecular 
weight. Entanglement molecular weight for polystyrene  is in the 
neighborhood of 30K and in the neighborhood of 15K for 
polybutadiene. Viscosity molecular weight dependence in Figure 2 
is consistent with the expected entanglement molecular weight for 
styrene butadiene. Higher entanglements lead to higher viscosity 
and lower adhesion to the medium. 

 There is a threshold in molecular weight below which 
cohesive strength of the toner image is low and breakable. Both 
molecular weight and cross-linking have significant affect on 
cross-linking. Figure 3 below shows that the slope of viscosity 
temperature flattens on increasing molecular weight in linear 
polyesters from 30K to 50K. However, largest change in viscosity 
temperature dependence occurs when polyester is Crosslinked.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3- Viscosity dependence on temperature of polyester at 100Sec-1, 
lmw-30K,  hmw-50K, x-link 30% gel 

Conclusion 
Contact and non-contact fusing involves coalescence and 

adhesion of toner particles with dependence on processing, 
material and geometrical parameters. In roll fusing, a contact 
fusing process, toner paper interface temperature is significantly 

lower 40C compared to toner in flash fusing which leads to lower 
coalescence and adhesion (fix).  
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