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Abstract 

Practical understanding of electrical discharges between 
conductors or between conductors and dielectrics is instrumental 
for the development of novel charging devices for Digital Printing 
Applications. The work presented on this paper focuses on 
fundamental aspects related to the inception of electrical 
discharges and breakdown in the initial stages (few 100’s of μs) to 
a detail hard to match with experimental techniques. Numerical 
simulations of 1-D Townsend and Dielectric Barrier Discharges 
(DBDs) are performed using a commercial Finite Element 
package (COMSOL). A combined fluid model for the electron and 
Ion fluxes is used together with a local field approximation on a 1-
D domain comprised of Nitrogen gas. The renowned Paschen 
breakdown result is successfully predicted numerically. Results 
are shown for the transient Townsend discharge that leads to this 
breakdown offering insight into the positive feedback mechanism 
that enables it. These transient results show how impact ionization 
combined with cathode secondary emission generate increasing 
waves of positive ions that drift towards the cathode again self 
feeding the discharge process. The simulation is then extended to 
predict the nature of a DBD in the case of a single voltage pulse. 

Introduction  

Gas Discharge Physics has been a topic of rigorous 
investigation in the scientific community for more than a hundred 
years both from a fundamental and a practical point of view. 
Dielectric Barrier Discharges (DBDs) in particular have attracted 
considerable attraction in recent times mainly due to its numerous 
applications in modern day life[1] such as plasma display panels, 
pollution control, surface modification, plasma chemical vapor 
deposition, etc.  

One such relevant application of DBDs is in the design of 
novel charging devices[6] for use in electrophotography as shown 
in fig. 1. Although the basic physics of DBDs are more or less 
clear, some of the issues are still under constant investigation. The 
relative role of various physical mechanisms such as secondary 
impact ionizations, field emission from cathode and 
photoionization are still not clear when the discharge length is on 
the order of micrometers, mainly due to experimental challenges. 
The numerical simulation in these cases is an useful tool[7] to 
address some of the fundamental questions still to be answered and 
also to validate the existing experimental data.  

This work will first discuss the mathematical model used for 
our parallel electrode numerical simulations. The results of this 
model are validated by first performing a simulation for a uniform 
DC electric field (with parallel plate electrodes) for which the so 

called “Paschen Curve” is well defined. Finally the extension of 
this model to a DBD is discussed including the required 
modifications for the boundary conditions. All the simulations 
discussed here are performed in only one dimension (1-D). 

 
Figure 1. Example of DBD in a charge roller application in Digital Printing 

Numerical Model Definition 
 Nitrogen gas at atmospheric pressure is assumed as the 
working gas. The domain is one dimensional as shown in fig.2.  
 

 
Figure 2. Numerical Model geometry and boundary conditions 

A hydrodynamic model [2] is used for the space charge flow 
together with a local field approximation model to allow 
computation of the transport coefficients, ionization coefficients 
and recombination coefficients as a function of the electric field to 
pressure ratio (E[V/cm]/p[Torr]). The governing Equations are 
shown below in terms of the local electrical potential (V), the 
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electron charge (e) and the ion (ni) and electron(ne) species 
concentration. 
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The continuity equations require knowledge of the diffusivity 

(D) and species drift velocity(u). Values for these variables where 
taken from [2] and [3]. Specifically we assumed De=1800 cm2/s 
and Di=0.046 cm2/s. The electron and Ion drift velocities are 
calculated as shown in equations (4) and (5). The gain factor(G) 
and Loss factor(L) respectively represent the impact ionization 
(new electron ion-pairs) and recombination terms and are defined 
below as well in equations (6) and (7). 
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7100.2 −×=β …recombination coefficient (9) 
 
 Boundary conditions at the electrodes are shown on fig. 

2 in terms of the space charge fluxes at the wall (J) and the 
secondary emission coefficient γ =0.01. The space charge flux at 
the wall is defined generically as: 

kkkkk unnDJ +⋅−∇= )( …space charge flux (10) 

On equation (6) the index k may be replaced by “e” for 
electron or “i” for ion flux respectively. These boundary 
conditions physically mean that at the anode the surface charge is 
null, a reasonable assumption given that any charge landing on this 
surface will generate a counter image charge. At the cathode ion 
collisions generate free electrons at a rate of 1% of the incoming 
flux, this is surface and material dependent and the value assumed 
here is a typical figure [3]. 
 

 
Figure 3. Steady state results for Ion and Electron concentration in domain 

Results and Discussion 

Townsend discharge Prediction 
The first simulation results shown on fig. 3 correspond to the 

steady state solution (solved through time evolution of the 
transient solution) for the electron and ion species concentration in 
our 1-D domain, basically the Townsend discharge regime 
between two parallel electrodes.  

The specific conditions solved for in fig. 3 correspond to a 
gap of D=1 cm between the electrode and an applied potential of 
28.5 kV. This value is close to the potential required for incipient 
breakdown. Note that the initial condition corresponds to 1000 
ion-electron pairs/cm^3 in the domain so application of the field 
sweeps away most of this initial pairs, background electron-ion 
pair production provides a continuous source of charges 
supplemented with secondary emission from the cathode but the 
final result for this applied potential is still a net depletion of the 
original electron-ion pair population. Note the 100x factor between 
the electron and Ion concentration scales. 

The effective space charge current density (A/cm2) under 
these conditions may be calculated using the formula of Morrow 
and Sato[4]: 

( ) dxunun
D
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D
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0
∫ +−= …discharge current (11) 

 This discharge current is computed for a given gap 
between the parallel electrodes as a function of the applied 
potential. The results for two different gaps (D=0.1 cm and D=1 
cm) between the parallel electrodes are shown in fig. 4. 
 

230 Society for Imaging Science and Technology



 

 

 
Figure 4. Discharge currents as a function of potential difference for two 

different spacing values between the parallel electrodes  
(D=0.1 cm and D= 1 cm) 

Casting the simulation results in the form of a discharge 
current as a function of the applied potential reveals two known 
characteristics of the Townsend discharge regime. First the 
existence of a constant current region in the curve which is 
interpreted as the current being limited by the background 
production of ion-electron pairs in the atmosphere, so in this 
regime the discharge is not self sustaining.  
 

 
Figure 5. Transient results for Ion concentration in domain, traveling Ion 

waves 

As the potential is increased the current follows an 
exponential rise typically identified with incipient breakdown, 
here is where the simulation results are most valuable as we can 
study in detail the processes that yield this phenomena. Figure 5 
shows the transient ion concentration distributions in our 1-D 
domain (D=1 cm) for different times after a potential of 30 kV has 
been applied. The initial condition is again the existing electron-

ion pairs at atmospheric pressure (~1000 pairs/cm3 at t=0) due to 
cosmic ray induced ionization. 

After the voltage is applied at time t=0, the electrons are 
swept very quickly towards the anode leaving evidence of their 
motion in the form of a peak in the space charge distribution of the 
ions due to impact ionization. This peak (denoted [A]) drifts 
towards the cathode at the expected ion drift speed also indicating 
a negligible space charge induced field. For reference ui=7.9x104 
cm/s for the applied field of 30 kV/cm as computed from eq. (5). 
As this peak starts reaching the cathode a new secondary 
ionization induced electron wave is generated which generates a 
second peak [B] in the Ion concentration distribution.  

Again the motion of this peak [B] is tracked on Fig. 5 as it 
drifts to the right towards the cathode. Each successive peak is 
larger than the previous one providing a positive feedback 
mechanism that leads to electrical breakdown. The oscillations 
displayed by some of the curves are probably numerical artifacts. 

Note the concentration level for the Ion species in fig. 5 as 
compared to those of the steady solution in fig. 3, although the 
difference between the fields is small the compounding effect of 
the described positive feedback mechanism quickly yields a rise in 
the Ion concentration level of a 1000x the starting value. 

 

Paschen Breakdown Prediction  
Using the discharge current results from fig. 4 and computing 

these currents for different values of the gap D between the 
parallel electrodes we can generate the Paschen curve for 
Nitrogen. All what is needed is a criterion for the breakdown 
threshold. Ghaleb et al.[5] cite the criterion for Paschen discharge 
to be when the space charge concentration levels are 5.106 times 
the initial values. For building the Paschen curve below we have 
taken a somewhat arbitrary albeit meaningful threshold: a 
discharge current that is 10x the saturation current from the 
background electron-ion pair production. The computed Paschen 
curve is shown in fig. 6. The predicted Paschen curve displays the 
expected minimum ~340 V close to a 16 μm gap and the increased 
threshold for gaps smaller than this value. 
 

 
Figure 6. Numerical prediction of Paschen’s Curve in Nitrogen 
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DBD pulse numerical simulation 
With added confidence on our numerical simulation we tackle 

next the problem of a DBD. As an example, the type of discharge 
that ensues between a charge roller and a photoimaging plate in an 
electrophotographic press is a DBD. The geometry under 
consideration is again 1-D and it is shown schematically in fig. 7. 
A single sinusoidal step of 2 kV is applied as shown with a rise 
time of 0.1 µs. 
 

 
Figure 7. DBD geometry and pulse excitation 

Boundary conditions are similar to those of fig. 2 with an 
additional boundary condition reflecting the accumulation of 
surface charge (σ) at the dielectric surface as the result of all the 
incoming space charge fluxes.  
 

 
 

Figure 8. DBD discharge current and dielectric charging as a result of a 
single pulse excitation 

Results for this DBD are given in fig. 8. Figure 8 shows three 
curves, the excitation potential applied between the electrodes, the 
surface potential on the dielectric and the discharge current. As the 
excitation potential is increased the threshold for a discharge is 
reached causing a pulse discharge lasting about 4 ns.  

The charge carried by this pulse deposits on the dielectric 
increasing its potential and eventually quenching the discharge 

completely. This model could be extended to predict the charging 
behavior of a photoconductor plate and charge roller combination 
under different conditions. 

 

Conclusion 
A 1-D numerical model for Dielectric Barrier Discharges 

(DBDs) is presented. The model is first validated against the 
known “Paschen Curve” result showing the expected behavior at 
atmospheric pressure. Even for this simple parallel plate electrode 
geometry the numerical simulation provides insight on how 
secondary impact ionization at the cathode combined with impact 
ionization provide a positive feedback mechanism once the applied 
potential is above a threshold enabling the transition from the 
Townsend discharge regime to the Paschen Breakdown. Results 
for this transition between the Towsend discharge and breakdown 
are shown for a parallel plate electrode geometry with a 1 cm gap 
filled with Nitrogen gas and a 30 kV applied potential. The 
numerical model is then extended to a 1-D DBD in a 10 μm sized 
Nitrogen filled gap with a 20 μm dielectric (εr=7) solved for an 
applied step voltage of 2 kV (sinusoidal step with 100 ns rise 
time). The simulation allows prediction of the current discharge 
pulse that arises as the applied potential in the gap reaches the 
threshold value. The simulation also predicts the quenching of the 
barrier discharge as the dielectric surface is charged, effectively 
screening the applied potential. 
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