
 

Figure 1: general view of a 
photoconductor drum (OPC) and 
the cleaning station 

Figure 2: (a) Schematic illustration 
of the cleaning station, (b) A focus 
on the blade tip OPC conjunction. 
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Abstract 
In Liquid electro photography (LEP), deformable blades are 

used to remove ink residuals and liquid from the Organic 
Photoconductor (OPC) drum. The thin layer remaining after the 
blade can produce undesirable chemical residuals on its surface. 
When bombarded by ions at the charging station, this layer can 
oxidize and affect the OPC’s electrical properties. In this work we 
investigate the blade-OPC drum conjunction under fully flooded 
inlet and outlet conditions; a theoretical model incorporating 
elastohydrodynamic (EHD) considerations was developed where a 
deformable blade is deflected by a moving surface (OPC). Unlike 
typical EHD problems which are widely discussed in the literature, 
our case consists of a contact line which causes singularity 
problem in the analysis. This singularity is due to the blade’s sharp 
corner edge prior to its deformation. In order to overcome this 
singularity, we first solved the elastic-static deformation of the tip 
using finite element simulation (COMSOL) and combined 
hydrodynamics considerations afterwards. Experimental results 
were found with good agreement to our calculations. We found 
that for a 2 [mm] width blade (1.2 [mm] deflection), the film 
thickness remaining after the OPC surface wiping is about 25 
[nm]. The contact nip length is 12 [μm], where the maximum 
conjunction pressure was found to be 4 [MPa] and 1.8 [MPa] 
under static and elastohydrodynamic conditions, respectively.  

 

Introduction 
Flexible blades are most widely used for fluid removal out of 

moving surfaces in printing, coating, chemical process and other 
applications. In typical digital printing machines a deformable 
flexible blades is used to remove remaining oil from the Organic 
Photoconductor drum (OPC drum) after a cleaning station and 
before a charging station as shown in Fig. 1.  A schematic 
illustration of a cleaning station system is shown in Fig. 2, a 
wetting roller (marked as 1 in Fig. 2a) raises the oil to the surface, 
a sponge roller (2) removes the fluid from the surface and the blade 
(3) cleans the remaining oil. The film thickness that was removed 
by wiping the surface is of an order of ~10 [μm], while the 
remaining film thickness is of the order of 10s of nanometers. If 
above certain thickness (~100 [nm]), the film which is left after the 
blade can produce undesirable coating layer on the OPC surface 
when bombarded by ions at the charging station [1]. In addition 
and under specific conditions, stuck particles which are between 
blade tip and OPC can cause mechanical scratches. Thus, there is 
great interest in understanding the interaction between the blade tip 
and the OPC drum. In this work we have modeled the blade OPC 
drum conjunction, where a deformable blade deflects against a 
moving surface under flooded conditions. This problem can be 
considered as a line contact elastohydrodynamic (EHD) problem. 

Elastohydrodynamic lubrication (EHL) is typically used when the 
pressure is high and the surfaces are elastically deformed and 
having relative velocities [2]. Hamrock and co-workers investigate 
EHL for over 30 years [3-6]. Their models include surface 
characterization, viscous effects and elastohydrodynamic 
lubrication [3,4,5].  Dowson reviewed the development and the 
understanding of fluid film lubrication in a deep review of EHL, 
which includes line and point contacts [2]. In another paper he 
reviewed the development of the thinning film in lubrication theory 
and included the phenomenon occurred at very thin films [6]. Hu 
and Granick reviewed the effects of nano-rheology on tribology 
[7]. Skotheim and Mahadevan considered the coupling between 
fluid flow and elastic deformation in confined geometry [8]. Flow 
between a rigid cavity and a flexible wall was demonstrated by Yin 
and Kumar [9]. The above cited studies considered solutions for 
two rollers or roller and a flat surface in contact situations, such as 
bearings, gears or seals with defined radiuses at the contact points.  
 

           

 

Unlike typical EHL problems mentioned above which were 
widely discussed in the literature, our case consists of a contact 
line which causes a singularity problem in the analysis. This 
singularity is due to the blade’s sharp corner edge prior to its 
deformation (see Fig. 2a). For the best of our knowledge, no work 
has dealt with a configuration which consists of a sharp corner in 
contact with a moving surface under hydrodynamic conditions as 
illustrated in Fig. 2b. Prior to the conjunction, one can consider the 
flow regime as a corner flow between a plane at rest (the blade 
plane) and scraped plane parallel to itself (OPC drum) [10,11]. In 
order to have an appropriate analytical model of the second region 
(II), elastohydrodynamic considerations must be taken into 
account. This model should predict the film thickness under the 
flexible blade as well as pressure developed at this conjunction. 
The third region (III) which determines the fluid layer between the 
conjunction and the charging area can be described as withdrawn 
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problem under constant flow in the inlet channel.  In this paper we 
dealt mainly on region II. 
 

 Analytical and numerical approaches 
The main aim of this study is to analytically and 

experimentally determine the film thicknesses left after the blade-
OPC drum conjunction. Another goal is to find the forces between 
the blade tip and the OPC drum. To achieve these goals and 
overcome singularity issues, we first solved the elastic static 
deformation of the tip and combine hydrodynamics 
considerations afterword. Once we find the elastic deformation of 
the blade tip, we assume minor changes occur in the blade 
deflection and then we add the elastohydrodynamics 
considerations.  
 

Elastic static deformation  
First, we found numerically the contact length (nip) and 

pressure distribution on blade’s tip consisting of a sharp corner 
prior to the deformation. To this end, COMSOL software was 
employed for a numerical simulation of this problem [12]. 
Consider a long polyurethane blade resting on a flat polycarbonate 
(OPC drum) foundation, where both structures are elastic. The 
OPC drum is subject to constant displacement perpendicular to its 
surface in the z direction. To overcome the blade tip singularity 
problem, we assumed a tip radius of 0.5 [μm] which is small 
enough to the expected deformed area and refined the numerical 
mesh at this region. Fig. 3a shows a numerical result of a deflected 
blade with typical dimensions of width=2 [mm] and length=30 
[mm], where the displacement of the OPC surface is 1.2 [mm] in 
the z direction. Fig. 3b is a magnification of the deformed blade 
tip, where the nip length was found to be 12 [μm]. In Fig. 3c we 
see the pressure distribution on the tip edge for the same example. 
We note that a high pressure and an asymmetrically distributed 
around the blade tip were found as expected. Results of the forces 
and lengths are summarized in table 1.  

 
Figure 3: (a) COMSOL result of the blade and OPC system after loading by 
displacement the OPC, (b) Von Misses stresses of the blade tip, (c) Pressure 
distribution on blade’s tip in MPa as a function of nip length. 

 

Elastic static deformation – Experiment 
Several experiments were conducted in order to validate these 

numerical results. In order to find the total force acting on the 
blade’s tip we used direct measurements under deflection. In 
addition a PDMS (Sylgard 184 Silicon) curing method was also 
used to find the nip length of the blade. These results (summarized 
in Table 1) were found to be in good agreement with our 
calculations. The measured forces showed some deviations from 
calculations, which can be related to friction and inaccuracy of the 
experimental setup. Fig. 4a illustrates the molded PDMS under the 
deformed blade edge, and Fig. 4b is an optical microscope image 
of the nip length after peeling the blade from the surface. 
 

 
Figure 4: (a) Illustration of the molded PDMS under the deformed blade tip, 
(b) an optical microscope picture of the nip length after peeling the blade from 
surface. 

Table 1: Force and nip lengths of 2 [mm] and 3 [mm] blade 
widths 

 2 [mm] blade with 1.2 
[mm] deflection 

3 [mm] blade with 
1.2 [mm] deflection

Total Normal Force 
between blade and OPC 
(COMSOL); measured 

(12 [N/m]) 

18 [N/m] 

(55 [N/m]) 

75 [N/m] 

Nip length of blade 

(COMSOL); measured 

(12 [μm]) 

14 [μm] 

(45 [μm]) 

50 [μm] 

The minimum gap 
calculated under blade tip 25 [nm] 45 [nm] 

 

Elastohydrodynamic solution  
We used the EHD interaction to find the liquid film thickness 

under the blade’s tip. The OPC drum deflects the blade which 
causes a local deformation of the blade tip (a static elastic 
deformation). Then, movement of the OPC drum under fully 
flooded conditions inverts the problem from static into 
elastohydrodynamic. Typically, in order to include the elastic 
deformations in the elastohydrodynamic interaction, the Reynold’s 
equation for the fluid is coupled to elastic modulation and then a 
numerical method is used for solving a non linear ordinary 
differential equation (ODE). We assume that the hydrodynamic 
solution will not change the tip shape nor the total forces acting on 
the blade.  

14 [μm] 
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Figure 5: a schematic illustration of the deformable elastic surface before and 
after OPC surface movement.  

A parabolic function is used to describe the shape of the 
deformable surface before the hydrodynamic consideration as 
shown in Fig. 5. The distance between the lowest point of this 
function and the OPC surface is denoted 1h . Thus, the distance can 
be expressed by   
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Where R  is the radius of curvature of the upper surface, and 
)(xD  is the gap change due to the elastic deformation. Using 

Coyle’s assumption that local deformation is propositional to the 
local pressure of the liquid flow we obtain an expression 
for )(xD [13]. 

 ( )
E

LxPxD ⋅=)( ,                           (2) 

where L  is defined as the effective length of the deformable 
part, E  is the effective elastic modulus. The liquid flow under the 
deformed part is governed by Reynold’s equation,  
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where P is the pressure, η  is the liquid viscosity and U  is 
the tangential speed of the moving surface. After dimensional 
analysis while using length scale Rh ⋅1 , velocity scale U  and a 

pressure scale 2/3
1h

UR ⋅⋅η , we obtained the following set of 

equations: 
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Figure 6: (a) Illustration of the two regions, A and B, (b) typical result of the 
pressure [Pa] distribution under the tip of the blade, (c) typical result of the film 
shape under the deformed blade tip after numerical calculation [m]. 

Naturally, these well known equations are valid for symmetric 
and predefined parabolic shape surfaces before deformation only. 
However, in our problem the blade’s tip is asymmetrically located 
relative to the OPC surface. In order to overcome this complexity, 
we divided the blade’s tip conjunction into two regions. The first 
region (A) is considered from the outlet up to the maximum 
pressure point, where region (B) extends from the maximum 
pressure point to the inlet as shown in Fig. 6a. The connection 
point between these two regions is defined by pressure reaches 
maximum and equal pressure derivative. Examining Fig. 6a, we 
can estimate the radii of each region. 1h  can be defined by finding 
the intersection between these two radiuses where L  is calculated 

as
max

1

P
hEL ⋅= . Finally, we iteratively solved equations (4,5) by 

changing the boundary conditions of the nip length and having the 
calculated total force as a constrain. An example of the pressure 
distribution under the tip is shown in Fig. 6b. It is clear that the 
maximum pressure obtained is smaller relative to the static solution 
due to larger nip under flooded situation. A typical film thickness 
under the deformed blade tip is shown in Fig. 6c. The results of the 
numerical solution for different geometrical parameters are 
summarized in Table 1. As shown, the film thickness based on the 
EHD model for different geometrical parameters were found to be 
25 [nm] and 45 [nm] for 2 [mm] and 3 [mm] blade widths 
respectively. Note: despite of the small film thickness obtained, the 
non-slip boundary condition assumption is still valid [14].  

25 [nm] 1.8 [MPa] 
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Figure 7: Experimental setup. 

 

Elastohydrodynamic - Experiment  
In order to validate our results, we injected nanoparticles 

dispersion with different sizes prior to the blade in experimental 
setup that is shown in Fig. 7. Fig. 8a and 8b show the particles 
image and sizes distribution. The experimental setup consists of a 
blade (plate_A) which rests on flat horizontal surface (plate_B) 
simulating the OPC drum. Plate_A can move with a constant 
velocity in the range of sec]/[205 cmV −= . High resolution SEM 
image of OPC surface (Fig. 8c) shows that nanoparticles above 30 
[nm] do not pass the blade (for a 2 [mm] width blade). In another 
test, using the same experimental setup, we used a high viscosity 
fluid and measured its thickness profile after curing. The expected 
results were in the order of ~200 [nm] which can be measured 
optically. We used varnish #7963 purchased from Nicoat (μ=75 
[mPa·s]) which was cured using a UV lamp (λ=350 [nm]). The 
film thickness measurements were carried out by a 
spectrophotometer (Varian Â®Cary5000 UV-visible-NIR) which 
can measure the intensity of light reflected from a thin film over a 
range of wavelengths. The thickness of the film was calculated 
from the spectral interference pattern obtained by the way 
analogous to the one described by Xiong et al. [15]. The results are 
summarized in Table 2. They show a good agreement between 
experimental and calculated results. 
 

 
Figure 8: (a) High resolution scanning electron microscope (HRSEM) picture 
of the injected gold nanoparticles, (b) graph of size distribution of the 
nanoparticles, (c) High resolution SEM picture of the surface after wiping the 
nanoparticles by the blade. 

Table 2: Film thickness remaining after a 2 [mm] blade width. 

 

Summary 
In this paper we developed numerical and experimental 

methods for blade OPC conjunction under hydrodynamic 
considerations. We find that the film thickness that passed the 
blade was of the order of several tenths of nanometers. A good 
agreement between experimental and numerical results was found.  
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Film thickness [nm] Varnish 
(#7963) 

Blade Velocity  

0.12 [m/s] 0.2 [m/s] 

Measured thickness 

Calculated  thickness 

250 [nm] 

240 [nm] 

465 [nm] 

420 [nm] 

500  [nm] 

400  [nm] 

10-100  [nm] 

25  [nm] 
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