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Abstract 

Recent progress towards understanding the charge transport 
mechanism in molecularly doped polymers MDP is reviewed. It 
has already been shown that the mobility is not understandable in 
terms of the Gaussian Disorder Model (GDM) or any other 
available model. In this paper, it is shown that characteristic 
features of the current-time transient are also not understandable 
in terms of available models. In addition, a method has been used 
to convert disorder energies obtained from GDM into Arrhenius 
activation energies. Using this methodology a list has been 
compiled of the activation energies of all molecularly doped 
polymers which have been characterized as a function of dopant 
concentration. This list demonstrates that disorder and polaron 
binding energies are small compared to observed activation 
energies, suggesting that some higher energy process determines 
the charge transport mechanism in MDP.  The experimental 
observations of activation energies that depend on ρ, the distance 
between hoping sites, and pre-factors independent of ρ are 
attributed to either interactions among the dopant molecules or the 
failure of the lattice gas model to properly calculate ρ at high 
dopant concentrations. 

Introduction  
The organic photoreceptor OPC used in virtually all 

electrophotographic engines is made up of a thin charge generation 
layer and a thick charge transport layer made from a molecularly 
doped polymer MDP. The mechanism of charge transport in the 
MDP has been under discussion for many years. Most papers have 
used the Gaussian Disorder Model GDM to explain experimental 
data. The GDM envisions the charge carriers hopping in a 
Gaussian distribution of states through the MDP aided by the 
imposed electric field. The width of the Gaussian distribution of 
states is directly determined by the disorder in the material. 

Recent Progress 
In the last two years a series of papers have compared the 

GDM and other transport theories to the whole body of 
experimental data, instead of focusing on one material at a time. 
When this was done, it was found that (1) the GDM does not 
adequately describe charge transport data in MDP because the 
disorder  energy, which can be obtained from the temperature 
dependence of the mobility, does not change as predicted by the 
theory when the disorder is changed [1], (2) the shape of the 
transient current also is not understandable in terms of any known 
transport theory [2], and (3) the activation energy scale, which has 
been derived from the disorder energies, is approximately 0.3-0.8 
eV, which is larger than predicted for the disorder or the polaron 

binding energies [3]. The experimental observations of activation 
energies that depend on ρ, the distance between hoping sites, and 
pre-factors independent of ρ are attributed to either interactions 
among the dopant molecules or the failure of the lattice gas model 
to properly calculate ρ at high dopant concentrations [3]. It appears 
that something critical is missing from our understanding of charge 
transport in MDP and perhaps in all organic materials. 

GDM Does Not Adequately Describe Charge 
Transport Data  

The primary argument that led to this conclusion is that the 
disorder energy, which can be obtained from the temperature 
dependence of the mobility, does not change as predicted by the 
theory when the disorder is changed. The detailed discussion was 
presented last year at NIP 24 [4] and in Ref. 1.   

The Current Transient is Not Understandable 
in Terms of Current Theories  

 To illustrate the discussion in Ref. 2 concerning the current 
transients, consider the shape of the transient conductivity pulse in 
standard linear current-linear time axes (see Fig.1). The data were 
taken with an electron gun excitation of 7 KeV, which generated 
holes within the first 1 micron of the sample. The plot on linear-
linear axes is familiar: an initial spike followed by a relatively flat 
current before the transit time; a mobility that follows the Poole-
Frenkel law, being exponential in the square root of the electric 
field; and a current after the transit time that falls much more 
slowly than can be accounted for using Gaussian statistics. Other 
data from this sample are shown in Fig. 2-4; this sample has no 
prior history of e-beam excitation before this experiment and the 
data from this sample have been repeated many times on other 
samples. Data at the same electric field are plotted using log-log 
axes in Fig. 2. This figure reveals the behavior over long times and 
low currents. Before the transit time the decrease of the current can 
be characterized by two power laws, t-0.3 which is the time t 
dependence of the spike, and approximately t0, which is the time 
dependence of the plateau. The current only decreases by about a 
factor of 2 from 10- 2 of the transit time to the transit time. After 
the transit time the current decreases algebraically as t-2.2 to a 
current value of about 10-2 of the value at the transit time.  The 
current shape is universal, which means it is independent of 
electric field. This is shown in Fig. 3 and 4. In Fig. 3 are shown w 
as a function of electric field. w is defined as (τ1/2-τ0)/τ1/2, where τ0 
is the transit time and τ1/2 is the time at which the current falls to 
half the value at the transit time. Note that w is independent of 
electric field, an indication of universality. Fig. 4 shows an overlay 
of three electric fields from 2.5 to 33 V/μm normalized to the 
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transit time on a log-log plot. It is an even stronger test of 
universality: the curves are independent of electric field from very 
short times, which includes the spike, to very long times 
(consistent with Fig. 3). We suggest calling this strong 
universality.    

Available theoretical models are not consistent with these 
data.  

The nearly constant current before the transit time suggests 
that the carriers are hopping with an approximately constant 
mobility by some intrinsic hopping mechanism or they are in 
dynamic equilibrium with an intrinsic shallow trap. A small 
decease in slope could indicate that a small amount of deep 
trapping exists with a very long release time (with respect to the 
transit time). This is consistent with the known temperature 
dependence of this current: it decreases more steeply as the 
temperature is lowered. But the origin of the initial spike and its 
time dependence, t-0.3, are not understood.  

The behavior after the transit time is puzzling. Attempts to 
explain this behavior with all known theories have failed to 
account for it. It is much wider than Gaussian transport would 
predict and it is not consistent with the width being determined by 
the generation region, Rudenko and Arkhipov’s field diffusion 
model, Coulomb repulsion, or an intrinsic shallow-trap controlled 
mobility [2].  

The data are inconsistent with the predictions of the GDM 
(putting aside the difficulties that the GDM has explaining the 
electric field dependence of the mobility and the experimental 
effects of changing disorder on the activation energy) because the 
slope of the current before the transit time is observed to be more 
shallow than predicted and because the field independence of slope 
is not predicted. Field independent slopes appear to be a general 
phenomenon of molecularly doped polymers (Fig. 3, 4, and Ref 2.)  

The data are inconsistent with the Scher-Montrol theory that 
assumes waiting time distribution functions which are longer than 
the transit time and its predicted electric field dependence [2]. 

Energy Scales  
The third paper [3] deals with the confusion caused by the 

disagreement on the role of disorder, which has led to 
disagreement on how to analyze the experimental mobility data. 
Plotting the mobility vs. T-1 or T-2 where T is temperature gives 
activation energies or disorder energies respectively, which cannot 
be compared.  Methods of obtaining the activation energy from the 
disorder energy have been suggested and implemented [3]. The 
results are shown in Tables 1 and 2. The activation energies in 
bold are directly measured; those in normal print are calculated 
from the disorder energies. The results are that the activation 
energies are between 0.3-0.8 eV. These results provide new 
evidence that disorder is of secondary importance in charge 
transport phenomena in MDP. The estimated largest dipolar 
disorder energy, 0.14 eV for a material with the largest dipole 
moment, 5.78 D, at the highest concentration reported, 60% 
DNTA in PC, is small compared to observed activation energies. 
Disorder energies for all other materials (with lower dipole 
moment) and lower concentration should be smaller than this 
value. Calculated polaron binding energies are also small [5], 0.3 ± 
0.1 eV compared to experimental observations (the polaron 
binding energy should be twice the observed activation energy or 
0.6-1.6 eV), suggesting that polarons do not govern charge 

transport in molecularly doped polymers. The large values of the 
observed activation energies suggest that some higher energy 
process determines the charge transport mechanism in MDP.   

Given the uniformity of behavior of the mobility in the 
MDP’s of Table 1 and 2 with respect to electric field, temperature, 
current shape, and sample thickness, we do not find it reasonable 
that there are two types of mobility characteristics in MPD’s which 
are represented by Table 1 and Table 2, those that have an 
activation energy that is independent of dopant concentration 
(Table 1) and those that have an activation energy that depends on 
dopant concentration (Table 2). It is argued [3] that the intrinsic 
mobilities in MDP’s are activated, with an activation energy that is 
independent of dopant concentration, and have a pre-factor that is 
exponential in ρ, the calculated distance between hoping sites, as 
expected for a hoping theory. The experimental observations of 
other behaviors, activation energies that depend on ρ (see Table 2) 
and pre-factors independent of ρ (Ref. 1 and 3), are attributed to 
either interactions among the dopant molecules or the failure of the 
lattice gas model to properly calculate ρ at high dopant 
concentrations. Therefore only the high values of activation 
energies in Table 2 are used to determine the energy scale – the 
lower vales are determined by interactions among the dopant 
molecules or the failure of the lattice gas model.  

Summary  
While progress is being made towards the elucidation of the 

charge transport mechanism in molecularly doped polymer, much 
work remains. Our current focus is on understanding the origin of 
the initial spike and using a new experimental technique called 
TOF1A, in which the hole generation region is varied from the 
MDP surface to the entire bulk using e-beam excitation.  
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Figure 1. Current transient from holes which transit an MDP, 30%DEH  (p-
diethylaminobenzaldehyde diphenylhydrazone) in PC ( bisphenol A 
polycarbonate) presented in linear current-linear time representation.  The 
sample thickness was 18 microns and the electric field was 33 V/μm. 

.   

 
Figure 2.  The current transient of Fig. 1 re-plotted on log-log axes.   

 
Figure 3.  w (see text) vs. the electric field.  

 

 
Figure 4. Log-log plots normalized to the transit time for three electric fields.  
1 is 2.5 /μm, 2 is 8 V/μm and 3 is 33 V/μm. Note that the curves overlay within 
experimental error, demonstrating universality over very short times (including 
the spike) and very long times (consistent with w being field independent). 
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Table 1. A complete list of activation energies of all 
MDP’s which have been characterized as a function of dopant 
concentration in which the activation energy is independent of 
the dopant concentration.      

      Dipole moment   σexp             Δexp         
       of dopant (D)     (eV)            (eV)      
Hole Transport       
1. DTNA:PS 5.78  0.15            0.79     
2. DEASP:PS 4.34         0.11±3%     0.61    
3. DEASP:PC 4.34  0.11             0.61    

(E=30V/um) 
4. DEH:PS  3.16         0.13±4%     0.60    
5. DEH:PC  3.16  0.13             0.60    
6. DEH-A:PC 2.67  0.13             0.60    
7. DEH-B:PC 2.57  0.13             0.60    
8. DEH-C:PC 2.48  0.13             0.60    
9. TPM-E:PS 2.1  0.110           0.47     
10. TPA-4:PS 2.1  0.115           0.49     
11. TPA-3:PS 2.1  0.11             0.45     
12. TPA-2:PS 2.0  0.110           0.45    
13. TPM-D:PS 1.81  0.110           0.47    
14. TPM-C:PS 1.7  0.110           0.47    
15. TPM-B:PS 1.51  0.108           0.45     
16. PDA:MBDQ   ≈1.4      0.32      
17. TPM:PS  1.33         0.122±.013 0.43     
18. TPM:PC  1.33         0.126±0.1   0.66     
19. TPA:PC  0.8  ≈0.095     0.30       
20. TASB:PS  0.54  0.103     0.46     
21. DOA:PMPS ≈0.5  0.086     0.29     
 
Electron Transport  
22. DPQ:PS  0.4  0.118           0.52     
23. MBDQ:PCZ   0.5         0.49     
24. PTS:PC  2.2  0.134     0.57      
25. DCAQ:PC 3.3  0.132           0.63     
26. DCAQ:PS 3.3  0.132     0.63    

 
Definition of Initials used in this paper (“=” sign indicates different 
abbreviations of the chemical name are used for the same material) 

DCAQ – 2-t-butyl-9,10-N,N’-dicyanoanthraguinonediimine 
DEASP –  1-phenyl-3((diethylamino)styryl)-5-(p- 

(diethylamino)phenyl)pyrazoline 
DEH –  p-diethylaminobenzaldehyde diphenylhydrazone 
DEH-A – 9-ethylcarbazole-3-carbaldehyde diphenylhydrazone 
DEH-B – 9-ethylcarbazole-3-carbaldehyde methylphenylhydrazone  
DEH-C –  1-pyrenecarbaldehyde diphenylhydrazone 
DTNA – di-p-tolyl-p-nitrophenylamine  
DOA – plasticizer dioctyl adipate 
DPH – p-diphenyl-aminobenzaldehyde diphenylhydrazone 
DPQ –  3,3’-dimethyl-5-5’-di-t-butyldiphenoquinone 
ENA-A – N,N-bis(2-methyl-2-phenylvinyl)-N,N’-diphenylbenzidine 
ENA-B – N-(2,2-diphenylvinyl)-4,4’-dimethyldiphenylamine 
ENA-C – N,N-bis(2,2-diphenylvinyl)-N,N’diphenylbenzidine 
ENA-D – N-(2,2-diphenylvinyl)diphenylamine 
ETPD – N,N’-bis(4-methylphenyl)-N,N’-bis(4-ethylphenyl)-(3,3’- 

dimethylbiphenyl)-4,4’-diamine 
MBDQ – 3,5-dimethyl-3’,5’-di-t-butyl-4,4’-diphenoquinone 
PC – bisphenol A polycarbonate 
PCZ – poly(4,4’-cyclohexylidenediphenyl)carbonate 
PDA – N,N,N’,N’-tetrakis(m-methylphenyl)-1,3-diamino-benzene 
 

Table 2 A complete list of activation energies of all MDP’s 
which have been characterized as a function of dopant 
concentration in which the activation energy is dependent on 
the dopant concentration.  

        Dipole moment       
                       of dopant (D)    σexp (eV)       Δexp (eV)      
Hole Transport       
1. TAA-A:PS 2.1       0.105-.115  0.43-0.52    
2. DPH:PCZ  ≈2     0.45-0.52   
3. TPD:PC          1.52     0.33-0.55                                   
4. TPD:PS  1.52     0.22-0.40    
5. ETPD:PC 1.5     1.32-0.45    
6. ETPD:PS  1.5     0.18-0.33    
7. PDA:PC-Z ≈1.4     0.35-0.60      
8. TAPC:PC 1.0  0.090-0.136 0.31-0.70                
9. TAPC:PS  1.0  0.067-0.080 ---------  

              (E=30V/um) 
10. ENA-B:PS 0.86  0.077-0.097 0.23-0.37   
11. ENA-C:PS 0.86  0.080-0.096 0.25-0.36      
12. TTA:PC  0.8  0.11-0.14  0.40-0.60               
13. TTA:PS  0.8  0.075-0.116 0.17-0.42               
14. TTA:PS-2       0.8  0.079-0.108 0.21-0.38    
15. TTA:PS-3       0.8  0.106-0.137 0.37-0.62    
16. ENA-A:PS      0.66  0.079-0.104 0.24-0.42   
17. ENA-D:PS      0.38  0.078-0.100 0.24-0.39   
 
 
 
 
 
 
 
 
 
 
 
 
PS – polystyrene 
PS-2 – poly(4-t-butylstyrene) 
PS-3 –  poly(4-chlorostyrene) 
PTS – 1,-dioxo-2-(4-methylphenyl)-6-phenyl-4- 

(dicyanomethylidene)thiopyran 
TAA-A – ethyl ester of 4-[bis(4- 

methylphenyl)amino]benzenepropanoic acid 
TAPC – 1,1-bis(di-4-tolylaminophenyl)cyclohexame 
TASB – bis(ditolylaminostyryl)benzene 
TPA – Triphenylamine 

TPM = TPM-A=MPMP – bis(4-N,N-diethylamino-2-
methylphenyl)-4-methylphenylmethane 

TPM-B – bis(4-N,N-diethylamino-2-methylphenyl)(4-propylphenyl) 
 methane 

TPM-C – bis(4-N,N-diethylamino-2-methylphenyl)(4-phenylphenyl)  
methane 

TPM-D – bis(4-N,N-diethylamino-2-methylphenyl)(4-phenyl) 
 methane 

TPM-E – bis(4-N,N-diethylamino-2-methylphenyl)(4- 
methoxyphenyl) methane 

TTA = TPA-1 =TAA-1 - tri-p-tolylamine 
TPA-2 = TAA-2 – tri-p-anisylamine 
TPA-3 = TAA-3  – methyl 3-(p-(di-p-tolylamino)phenylpropionate 
TPA-4 = TAA-4 – 4-bromo-4’4’’-dimethyltriphenylamine 
TPD – N,N’-diphenyl-N,N-bis(3-methylphenyl)-[1,1’-biphenyl]- 

4,4’diamine  
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