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Abstract 
Experiments were conducted with an EFM (Electrostatic 

Force Microscope) to measure surface potential distribution on 
CTL (Carrier Transport Layer) having two different charge 
mobility characteristics. One CTL has lower charge mobility 
characteristic and other CTL has higher charge mobility 
characteristic.  Four electrodes were placed on each CTL with 100 
micrometers and 200 micrometers separation respectively. We had 
a detector of the EFM scan over three electrodes to measure 
surface potential distribution on the surface of each CTL. We 
applied a known voltage on two electrodes and remaining 
electrodes were connected to ground. We consequently could 
observe significant surface voltage fluctuation real time basis on 
both CTL films. The substantial fluctuation of surface voltage 
distribution could explain charge migration in CTL toward 
horizontal direction, which is perpendicular to applied electric 
field. The thickness of each CTL was only 5 micrometer therefore 
the electric field which was perpendicular to the CTL films was 
supposed to be very strong and uniform. 

Background 
Measurement of surface voltage distribution on 

electrophotographic photoreceptor is commonly made with using 
an electrostatic voltmeter. Electrostatic voltmeter is conventionally 
used with a non contacting method with taking a fairly large 
spacing (around 3 mm) between detector probe and surface of 
photoreceptor, therefore the expected spatial resolution from 
measurements with an electrostatic voltmeter is extremely large so 
it is inadequate to accomplish a direct measurement of electrostatic 
latent image on a photoreceptor. Surface voltage measurement on 
photoreceptor with much higher spatial resolution than 
conventional electrostatic voltmeter has been a critical demand for 
electrophotography for a long time.   

Trek Japan K.K. and Nihon University have been working 
jointly on a research for the development of electrostatic voltage 
measurement apparatus having relatively high spatial resolution.  
Surface voltage on electrophotographic photoreceptor is relatively 
high namely in the range between the absolute value of 200 V and 
800V and area needs to be measured is fairly large.  What required 
on a new surface voltage distribution measurement apparatus, i.e. 
an electrostatic force microscope (EFM) are (1) having a spatial 
resolution of 10 µm in diameter, (2) having a capability to measure 
wide area such as it should cover an area as large as a few 10 cm2, 
and (3) the measurable surface voltage should be as high as 1kV. 

For the sake of understanding our goals clearly, we have done 
numerical simulations with the Finite Element Method (FEM) to 
start with. [1] 

Principle of Electrostatic Force Microscope 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Principle of EFM  
 

Tip of detector on an optical cantilever is placed close to 
surface under test.  DC bias voltage (VDC) and AC bias voltage 
(VAC sin ωt) are applied to cantilever including detector. If the 
surface under test is charged, we should be able to expect either 
attractive or repelling electrostatic force appeared on the detector. 
Either attractive or repelling force can be detected through 
measuring bending amount of the cantilever with an optical 
leverage method.  The electrostatic force appeared on the detector 
consists of two different force components Fω as well as and F2ω 
where Fω has the same frequency component as the applied AC 
bias voltage whereas F2ω has twice higher frequency component as 
the applied AC bias voltage. If we estimate a parallel plane model 
on the apparatus as shown in Figure 2, those two forces are 
obtained with the following equations [2], [3],  

 
 
 
 
 
If the distance between detector and surface under test (d－d0) 

as well as the dielectric constant of a material under test (ε) are 
evident, we can measure Fω with applying a pre-set VDC to 
cantilever and detector so that we can simply calculate the voltage 
on surface under test (ρd0/ε) with aforementioned equation (1). 
However, since high voltage is in existence on the surface under 
test, an arcing between detector and surface under test may occur. 
To prevent from the occurrence of any contingent arcing between 
detector and surface under test, we discussed a zero voltage 
method. We obtained a VDC with which Fω became to be zero in 
advance. 
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Figure 2. Parallel Plane Model 

Verifications of Spatial Resolution Capability 
We have attained measurements with an apparatus designed 

based on aforementioned principle. A cantilever with a detector 
was made out of a nickel foil having a thickness of 5 µm. The tip 
of the detector was sharpened by a Focused Ion Beam (FIB) 
system. In parallel with conducting experiments, we also have 
carried out simulations for analysis of electric field distribution 
with the Finite Element Method (FEM) to verify the performance 
of the EFM. [1], [2], Two graphs are shown in Figure 3 which is 
the comparison of actual data and simulation results in spatial 
frequency. The blue line shows the actual measurement obtained 
with the EFM, whereas the red line shows the results of the FEM 
simulation with using comb-shaped electrodes furnished on a glass 
substrate for both experiments and simulation. Each plot was 
normalized as spatial frequency to be “1” with signal strength from 
a detector when the detector was placed exactly over the center of 
each electrode. From this comparison, the overall differences 
between actual data and simulation results were within the range 
of 5% therefore if we define the spatial resolution capability of the 
EFM at a half value of each signal strength, we can conclude that 
we have accomplished one of our goals of voltage measurement 
with a spatial resolution of 10 µm (approximately 2,400 dpi). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Spatial frequency of EFM 

Specimens for Measurements 
We have created two specimens with Organic Photo-

Conductor (OPC) having two different charge mobility 
characteristics, i.e. a film with higher charge mobility (a-1) and 
other film with lower charge mobility (d-1).  They were the OPC 
films commonly used for the Carrier Transport Layer (CTL) of 
which dominant charge carriers are holes.  The details of the 
structure of those specimens are shown in Figure 4. A CTL film 
having a thickness of 5 µm was deposited on an aluminum 
substrate then electrodes made out of aluminum of which thickness 

was 0.2 µm each were placed later on the CTL film. In order to 
ensure that the electric field appeared with the voltage applied to 
those electrodes are parallel in reference to the surface of the 
specimen, we took a 100 µm distance between Electrode A and B 
and a 200 µm distance between Electrode A and C respectively. 
We chose a width of 300 µm for Electrode A and we also set a 
width of a few mm for Electrode B and C.  

We have decided the scanning direction of the EFM detector 
to be perpendicular to the length direction of electrodes. We have 
set a 5 µm distance between tip of the detector and the specimen 
surface and scanned with an incremental movement in a 2 µm 
toward horizontal directions (both right to left and left to right) 
throughout scanning. 

 

 

 

 

 
 
  
 Figure 4. Structure of Specimen and Position of Detector  

Results and Discussions 

Surface Potential Distribution Measurement 
The data with applying -150 V on Electrode A and 0V to 

Electrode B, C and D on the CTL (a-1) are shown in Figure 5.  
When this measurement was conducted, we have scanned the 
detector started from Electrode B, Electrode A then Electrode C 
(From right to left if you refer to Figure 4). We have spent for 20 
minutes of duration from one complete scanning sequence. We 
also set an interval for 20 minutes between the first scanning and 
the second scanning, therefore we have to identify an interval for 
40 minutes between the first scan and the second scan in 
measurement over the same point. 

We have plotted surface voltage on the Y-axis, whereas we 
have plotted relative position on the X-axis of the graph in Figure 
5. We have indicated in the graph “1st” for the data that we have 
acquired from the first scanning and “2nd” for the data acquired 
from the second scanning. 

A very interesting phenomenon was observed through the 
measurements.  Those voltages on CTL between Electrode C and 
A as well as between Electrode A and B were further increased 
toward negative polarity direction for both. It looks as though the 
charge was migrated horizontally in the OPC film although we 
applied the electric field only toward perpendicular direction to the 
OPC film. We did exactly the same experiments with using the 
OPC (d-1), we could observe little charge migration toward 
horizontal direction. 

Dielectric Film
　 ε

Charge
　 ρ

Tip

VDCd

d0 V  Sinω tAC

ε 0

NIP25 and Digital Fabrication 2009     Technical Program and Proceedings 213



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. 2 Times Scanning over High Charge Mobility OPC  
 

An attention was paid to the charge mobility characteristic as 
well as the surface voltage fluctuation. We have done further 
experiments with applying -150 V to both Electrode A and B then 
we set 0 V on both Electrode C and D. The same experiments were 
conducted on both the CTL (a-1) and the CTL (d-1).  The scanning 
method as well as the time intervals were identical to the 
experiments as described in the above.  The results with CTL (d-1) 
were shown in Figure 6 and the results with CTL (a-1) were shown 
in Figure 7.  

We were able to observe that the voltage increase toward 
negative direction on the CTL (d-1) between Electrode A and B in 
proportional to the elapse of measurement time as shown in Figure 
6.  However, the voltage on the CTL (a-1) stayed the same at -150 
V and unchanged. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. 2 Times scanning over Low Charge Mobility OPC 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. 2 Times scanning over Low Charge Mobility OPC 

Surface Potential Fluctuation in Time 
We have observed the surface voltage change in time on CTL 

as shown in Figures 6 and 7.  In order to confirm how the surface 
voltage changes as time elapsed, we have fixed the location of the 
detector at a certain point between Electrode A and B then we 
monitored the surface voltage change in time on both CTL films.  

We chose the stationary monitoring point for both (a-1) and 
(d-1) CTL films where the voltage was the highest in positive 
direction between Electrode A and B then the detector was fixed 
over each of the particular point on (a-1) and (d-1) CTL films. The 
voltage applied to each of Electrodes was the same as described 
the above. (-150 V to both Electrode A and B and 0 V on both 
Electrode C and D) 

Since this experiment was commenced over an electrode of 
which voltage was not confirmed as 0V, we have spent the 
duration of 136 seconds for increasing the applied voltage which 
eventually reached -150 V for preventing any arcing from 
accidentally happening.  

The results were shown in Figure 8. The surface voltage on 
CTL (d-1) gradually increased toward negative direction as we 
increased the applied voltage on the electrodes toward negative 
direction. We were able to observe a consecutive voltage 
fluctuation at the rate of approximately -25 mV/s right after the 
applied voltage on the electrodes reached at -150 V.  

During the course of a 2,200 seconds measurement on CTL 
(d-1), we were not able to see the saturation of the surface voltage 
increase and it consequently reached at -80 V, whereas the surface 
voltage on CTL (a-1) increased toward negative direction in 
proportional to the increase of the voltage applied to the 
electrodes.  The voltage on the CTL (a-1) became approximately -
150 V in 60 seconds after the voltage applied to the electrodes 
reached at -150 V.  The voltage fluctuation rate on the CTL (a-1) 
was -310 mV/s.  

From those results, we have confirmed that the EFM has a 
capability to monitor the difference of the charge mobility 
characteristic of the CTL of OPC real time basis. 

These phenomena are consistent with previous study that 
showed the latent image profiles from a higher charge mobility 
CTL looks to be broader and shallower by means of horizontal 
spreading of charge distribution on the surface. [4] 
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Figure 8. Surface Voltage Fluctuation in Time as referred to Applied Voltage 
on Electrodes 
 
Conclusion 

Electrostatic voltmeters commonly available have spatial 
resolution in a range as high as a few mm which is far from 
adequate performance for reading electrostatic latent image on a 
photoreceptor. A Scanning Probe Microscope (SPM) has been 
available for electrostatic surface voltage measurement with high 
spatial resolution on a photoreceptor however it may not 
accomplish accurate measurement because the length of detector 
may not be long enough for attaining accurate measurements. 
Therefore, we have been working on the development of an EFM 
which can accurately measure electrostatic surface voltage with a 
spatial resolution of 10 µm or better. The EFM has a relatively 
long detector of which length is greater than 100 µm and it has a 
capability to measure surface voltage as high as what is demanded 
by the electrophotography as well. We have completed 

measurements on CTL films with a 2 µm incremental scanning. 
Through those real time measurements on surface voltage on the 
CTL films, we were able to measure the charge mobility 
difference from those two CTL films in real time basis.  

The data of surface voltage difference in transient response 
obtained with this EFM may explain reasons why blurriness takes 
place upon usage of high charge mobility film for a photoreceptor. 
We have confirmed that the EFM can provide an epoch making 
progress for the analysis as well as the development of 
electrophotographic materials for obtaining better quality pictures. 
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