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Abstract 
An electrophotographic single layer organic photoreceptor 

consisting of relatively low concentrations of phthalocyanine 
pigments dispersed in an insulating binder polymer, which is 
generally referred to as a high gamma photoreceptor, shows the 
induction effect. Several mechanisms have been proposed to 
explain this phenomenon. However it is not completely clear at this 
time. In this paper, the photo-induced and dark discharge 
characteristics of the high gamma photoreceptors consisting of x-
type metal-free phthalocyanine pigment and polyester polymer are 
found to be well described by our theoretical model which takes 
into account the structural trap. We have found that the good 
charge acceptance and the high gamma characteristics depend on 
structural traps. It is mathematically simulated that the x-type 
metal-free phthalocyanine’s own photoresponse to digital image 
exposure is not deteriorated in spite of charge carrier trappings by 
structural traps during carrier transport.  

Introduction 
Weigl reported in 1972 that an electrophotographic single 

layer organic photoreceptor consisting of relatively low 
concentrations of x-type metal-free phthalocyanine pigments 
dispersed in suitable binders, which is now referred to as a high 
gamma photoreceptor, shows the induction effect [1]. Kinoshita 
has proposed in 1989 to apply the induction effect to the photo-
induced discharge by high intensity short pulse exposure in digital 
electrophotography [2, 3]. Since then, several mechanisms have 
been proposed to explain this unique phenomenon [4 - 7], however 
it is not completely clear at this time. In the present paper a 
theoretical model which takes into account the physical process of 
structural trap is applied to not only the photo-induced but also the 
dark discharge characteristics of high gamma photoreceptors.  

Experiment  
The Digital Photoreceptor HGPC (High Gamma 

Photoreceptor) was fabricated with an electrophotographic single 
layer organic photoreceptor of 18μm thickness which consisted of 
x-type metal-free phthalocyanine (the average diameter: 0.7 μm, 
21.7 vol %) dispersed in low-molecular polyester on an 80 mm 
diameter aluminum drum. Hardness and moisture-fastness of the 
binder are improved by cross-linking a low molecular polyester 
with a molecular weight of about 5000 using butylated melamine 
resin. Photo-induced and dark discharge characteristics of Digital 
Photoreceptor HGPC are measured using the conventional PIDC 
method. The wavelength of exposure is 710 nm and the pulse 
exposure time is 3.6 x 10−3 sec. The amount of exposure is altered 
by changing the intensity of light source. The surface potential of 

the photoconductive drum is measured after 0.3 sec from the pulse 
exposure.  

Figure 1.  Photo-induced discharge characteristics for high gamma 
photoreceptor with x-type metal-free phthalocyanine. Solid line: theoretical 
curve calculated with structural depth ds=0.02 µm. Broken lines: simulated 
curves calculated with various structural depths.  
 

Figure 2.  Dark discharge characteristics for high gamma photoreceptor with  
x-type metal-free phthalocyanine. Solid line: theoretical curve calculated with 
structural depth ds=0.02 µm. Broken lines: simulated curves calculated with 
various structural depths.  

Result 
Fig. 1 shows the comparison between photo-induced 

discharge characteristics observed for Digital Photoreceptor 
HGPC and theoretical curve. The observed induction exposure is 
1.1 μJ/cm2. 
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Fig. 2 shows the comparison between dark discharge 
characteristics observed for Digital Photoreceptor HGPC and  
theoretical curve. The observed dark decay rate is about 2.5 V/sec 
and the slow dark decay period is about 80 sec.  

Discussion  
Structural trap model  

Fig. 3 gives a schematic view of photoconductive particles 
randomly dispersing in an insulating binder polymer. Kitamura 
reported that the phthalocyanine pigments formed chains in the 
range of concentrations higher than 20 wt % of phthalocyanine 
pigment [6]. According to the percolation theory, endless chains 
are formed higher than 16 vol % of spherical bodies and those 
average contact points are to be 2.1. As is indicated in Fig. 3, 
under such circumstances that the contact point to the next particle 
is eccentrically from the center of the base of spherical bodies in 
the direction of electric field, free carriers are considered to be 
trapped within a saucer-shaped space surrounded by insulating 
binder polymer [8]. The distance from the base is termed a 
structural depth. The electric field due to surface charges generates 
electrostatic potential wells within the structural traps. Trapped 
carriers with kinetic energy higher than the energy barrier move to 
the next photoconductive particle through the contact point as is 
indicated by an arrow a.  
 

Figure 3. Schematic configuration for structural traps. Arrows a and b indicate 
directions forward which holes move. 
 

Figure 4.  A generalized structural trap model. 
 
 

Fig. 4 shows a generalized structural trap model, where ds is 
the average of structural depths of individual particles, Ec is the 
electric field due to the surface charges n0 and reminded holes and 
nt is the trapped holes (cm−2). The Maxwell-Boltzmann distribution 
is applied to trapped holes as follows:  

 

                              m                          m v2 
f(v) d v = (⎯⎯⎯⎯)0.5 exp (− ⎯⎯⎯ ) dv                          (1) 

2 π k T                     2  k T    
 
where m is the hole mass, k is the Bolzmann constant, and T is the 
absolute temperature in Kelvin. Assuming that the contact point to 
the next photoconductive particle is closer to unit, one dimensional 
and + directional motion is taken into account.  

The energy barrier ΦB  at the distance ds shown in Fig. 4 is 
calculated using a method of successive calculation with Ec , eq. 
(1), trapped holes nt, and Gauss’s law. The detrapping rate of holes 
with kinetic energy higher than ΦB is given by  

 
d ndt                     kT                             ΦB  

  ⎯⎯⎯  =  − nt   ( ⎯⎯⎯ ) 0.5   exp ( −   ⎯⎯ )                  (2)           
  d t                    2 π m                         k T 

Photo-induced discharge mechanism  
The photo-induced discharge model for the high gamma 

photoreceptors is schematically illustrated in Fig. 5. Structural trap 
layers distribute periodically in the photoconductive layer and the 
distances between structural trap layers are the mean free path of 
holes. 

The energy barrier ΦB0 shown in Fig. 5 (a) is related to the 
initial surface potential V0  by the equation  

 
ΦB0 = V 0 ds /dp                                                                      (3) 

 
where dp is the thickness of the photoconductive layer. 

The quantum efficiency of the field controlled carrier photo-
generation of x-type metal-free phthalocyanine is reported by 
Hackett [9] as follows:  

 

η(E) = η0  exp[(βpf E 0.5/kT ) − (Φ0pf /kT)]                            (4) 

 
where E is the electric field, and βpf =1.06×10− 4 eV · cm0.5 · V − 0.5

，Φ0pf = 0.09 eV for the wavelength of 620 nm. We added the 
correction term η0 to Hackett’s equation considering the difference 
of wavelengthes and/or sample preparations.  

Photogenerated holes ng(t) are trapped by the first structural 
trap during the induction period as shown in Fig. 5 (b). The energy 
barrier of the structural trap ΦB decreases as the exposure time 
proceeds, finally trapped holes begin to detrap. Detrapped holes ndt 
are given by eq. (2). The instantaneous trapped hole carrier density 
nt(t) is determined as follows: 
 

nt(t) = ng(t)  − ndt(t)                                                                                               (5) 

 
The structural traps within the photoconductive layer during 

the carrier transport are shown in Fig. 5 (c). Assuming that total 
number of structural trap layers are NL, detrapped holes ndtN (N ≥ 2) 
are given by eq. (2), then, the trapped hole carrier density in the N 
th structural trap layer ntN is determined as follows: 

 

ntN(t) = ndt(N − 1)(t)  − ndtN(t)                                                                              (6)    
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Therefore, the surface potential VtN due to holes at the Nth 
structural trap layer can be given by  
 

VtN(t) = e ntN (t ) dp (1 − N/NL )/εrε0                                                          (7) 

 

Therefore, the instantaneous surface potential of the 
photoconductive layer Vs(t) is calculated by  
 

e ng(t ) dp          NL   
Vs(t) = V 0  −  ⎯⎯⎯⎯⎯  + Σ  VtN(t)                                   (8) 

εr ε0               N =1  
 

The solid curve shown in Fig. 1 was calculated using the 
method of successive calculation with eqs. (3) ~ (8) and ds = 0.02 
μm. The correction factor and the structural trap layers were 
determined to be  η0 = 0.88 and NL = 15 layers (the distance 
between structural trap layers = 1.2  μm).  
 

Figure 5. Photo-induced discharge mechanism for a high gamma 
photoreceptor based on the structural trap model. 
 
 
Dark discharge mechanism  

The dark discharge model for the high gamma photoreceptors 
is schematically illustrated in Fig. 6. Holes and electron space 
charges are thermally generated in the photoconductive layer as 
shown in Fig. 6 (a). The negative potential Ve due to electron space 
charges is given by  

 

Ve(t) = e G t d p2
 /2 εr ε0                                                                                    (9) 

 

where G (cm−3 · s−1) is the thermal carrier generation rate and t is 
the time.  
 

Figure 6. Dark discharge mechanism for a high gamma photoreceptor based 
on the structural trap model. 
 
 

The instantaneous trapped hole carrier density nt is 
determined as follows: 
 

nt(t) = e G t d p / NL − ndt(t)                                                                           (10) 

 
The positive potential Vt due to tapped holes is given by  

nt(t) dp (NL − 1) 
Vt(t) =  ⎯⎯⎯⎯⎯⎯⎯                                                  (11) 

                             εr ε0    
 

The surface potential Vs and the energy barrier ΦB decrease as 
the dark decay time proceeds as shown in Fig. 6 (a), finally the 
trapped holes begin to detrap from all structural traps as shown in 
Fig. 6 (b). The detrapped holes ndt are given by eq. (2).  

The surface potential of the photoconductive layer Vs(t) is  
 

Vs(t) = V 0  − Ve(t) + Vt(t)  + Vf (t)                                         (12) 
 
where Vf (t) is the potential due to detrapped holes (details are 
omitted in this paper). 

The solid curve shown in Fig. 2 was calculated using the 
method of successive calculation with eqs. (9) ~ (12), G = 4.2 x 
1013 cm−3‧sec−1, and  NL =15 layers. The structural depth was 
determined to be ds = 0.02μm.   
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Electrophotographic performance  
1. High gamma and high image resolution 

The broken line curves in Fig. 1 show photo-induced 
discharge curves  with ds = 0 µm, 0.01 µm, 0.015 µm, 0.03 µm. 
The  induction exposure and gamma characteristics are found to be 
depend on the structural depth. The above investigation leaves big 
hopes of how high the resolution can be achieved with the Digital 
Photoreceptor HGPC. Fig. 7 (b) shows various dot-per-inch 
equivalent line pair drawing image on the photoconductor with the 
laser beam of diameter about 6 μm and developed with the liquid 
toner. The light pattern on the photo-paper confirms the image as 
shown on Fig. 7 (a). Although there is some localized uneveness 
due to the rough surface of the photoreceptor, two image patterns 
((a) and (b)) are very similar. Closer observation shows that the 
4400 dpi resolution (one-dot line pair) is defined, though the line 
are bit thin along with the well defined 1467 dpi (3-dot line pair) 
lines.  The Digital Photoreceptor HGPC shows that the all images 
can be displayed correctly. 
 
(a) 
 
 
 
 
 
 
 
 
 
 
 
 
                            1467 dpi        2200 dpi    4400 dpi 
(b) 
 
 
 
 
 
 
 
 
 
 
 

1467 dpi        2200 dpi    4400 dpi 
Figure 7.  (a) Image on photo-paper and (b) liquid toner image on Digital 
Photoreceptor HGPC . 
 
 
2. Slow dark decay and bolcking layer 

Eqs. (9) and (11) yield  
 

 dVS        dVe          dVt              e  dp 
2 G          

⎯⎯  =  ⎯⎯   −    ⎯⎯    =   − ⎯⎯⎯⎯⎯                         (13)                                                                                                                  
d t         d t            d t              2 εr   ε0  NL 

The dark decay rate of a trap free photoreceptor has been 
theoretically known as the eq. (13) with NL=1. Therefore dark 
decay rates of high gamma photoreceptors are improved to be NL 
times as expressed in eq. (13). It is found theoretically that the 
slow dark decay rate depends on the limited displacement within dp 
/NL for thermally generated holes. It also means that stuructral 
traps near the surface work as a blocking layer against the injection 
of charge carriers on the surface of the  photoconductive layer.  
 
3. Fast photorespose 

The time loss due to trap and detrap processes during carrier 
transport  is calculated to be 20 x 10−3 sec at the exposure of 1.7 μ
J/cm2 shown in Fig. 1. It is sufficiently shorter than the time from 
an exposure position to a development station (about 0.1 ~ 0.3 sec). 
The x-type metal-free phthalocyanine’s own photoresponse to 
digital image exposure is not deteriorated in spite of charge carrier 
trappings during carrier transport. 

Conclusion 
The high gamma photoreceptors are found to be well 

described by our theoretical model which takes into account the 
structural trap. We have found that the electrophotographic 
performance depends on the structural trap. Toners have been 
already made increasingly fine in diameter. The high gamma 
photoreceptor is the most promising target for the next generation 
imaging technology. 
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