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Abstract

Prolonged exposure of a commercial organic photoconductor
in the plasma environment corresponding to an industrial
electrophotographic process caused formation of a parasitic
surface layer with the properties different from the original
photoconductor. The parasitic film consists of a heavily oxidized
surface and oxygen-free subsurface layer with the chemical
composition similar to the original photoconductor but a
significantly different bonding arrangement. Formation of these
two regions has been correlated with damage induced by the
energetic radicals and the UV photons originating from the
electrophotographic plasma discharge. In-depth understanding of
the formation and the properties of this parasitic layer could
provide effective means to overcome its detrimental impact on the
printing cost and quality.

Introduction

Advances in the commercial electrophotographic printing
yielded development of complex organic photoconductors
frequently used in conjunction with the charge roller. However,
employment of these components in the applications requiring
long runs and high speed printing demonstrated potential problems
related to not well defined, so-called photoconductor "wear-out",
manifesting itself in form of undesirable changes in the physical
and chemical properties of the photoconductor and the
corresponding print quality degradation [1]. Goal of this work was
to investigate the nature of the structural and compositional
changes occurring within the surface region of a commercial
organic photoconductor occurring during a prolonged exposure of
the photoconductor to the plasma within an electrophotographic
environment, and to provide path towards elimination of these

undesirable photoconductor's modifications in the future
electrophotographic applications.
Experimental

An experimental set-up analogous to a common

electrophotographic print engine was used. It consisted of an
organic photoconductor covering the surface a large diameter
drum and a small diameter charge roller in contact with the
photoconductor. In several cases a scorotron was used instead of
the charge roller. A bank of light emitting diodes in vicinity of the
photoconductor was used to neutralize the electrical charges on the
surface of photoconductor. All components of the experimental
set-up are commercially available. The organic photoconductor
consisted of a polycarbonate layer deposited on the metallized
Mylar substrate. The bottom part of the polycarbonate film was
doped with organic molecules providing holes when illuminated,
while the top part contained small amount of the molecules
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enabling hole transport (arylamine-substituted hydrazone-based
species).

Following the common electrophotographic process negative
charging of the photoconductor’s surface was achieved by
applying the negative bias between the charge roller and the
metallized base of the polycarbonate layer within the
photoconductor under room ambient conditions. Charging of the
photoconductor’s surface occurred when the bias exceeded the
threshold of Paschen discharge. It took place only in the region in
direct vicinity of the charge roller (approximately 1/250 of the
total photoconductor’ surface). In order to imitate the effect of the
prolonged plasma exposure on the photoconductor’s surface the
photoconductor was rotated with charge roller in contact and bias
applied. This process corresponded to printing multiple pages.

Current flowing between the charge roller and the
photoconductor as a function of the applied bias was monitored
throughout the entire experiment. In addition, surface potential of
the photoconductor was continuously measured using a non-
contact electrostatic probe placed in the vicinity of the
photoconductor. Light emission related to Paschen discharge was
detected with an optical fiber (UV transparent at wavelengths
above 270 nm) pointed at the center of the plasma cloud and
analyzed with the help of spectrometer equipped with a
photomultiplier detector having resolution of about 0.25 nm and
calibrated with an external reference spectrum. This resolution
could not resolve all the fine details of the emitted light but
allowed for identification of the major emission features.

The X-Ray Photoelectron Spectroscopy (XPS) and the
Attenuated Total Reflectance Fourier Transform Infrared
Spectroscopy (ATR-FTIR) were used to evaluate chemical
modifications introduced by prolonged plasma exposure of the
photoconductor corresponding to continuous printing of multiple
pages. XPS can measure the chemical composition of the
photoconductor’s surface, while ATR-FTIR can provide
information about the nature of chemical bonding within a thin
region below the surface. This technique can detect specific
molecular vibrations and it is particularly well suited to monitor
modification of the chemical bonding arrangement introduced by
the prolonged interactions with plasma. In addition, the wetting
angle measurement was used to monitor changes of the
photoconductor’s surface energy caused by the plasma exposure.

Particle bombardment and UV illumination are the two major
mechanisms of interactions between the Paschen discharge and
organic photoconductor. In order to elucidate their relative impact
on the photoconductor material, samples of the photoconductor
were exposed to particle bombardment in a parallel-plate Ar-O,
plasma etcher operating at pressure of few hundred mTorr and bias
of 300V. Its operating conditions were selected to vary the UV
generation and maximize the effect of particle bombardment.
Although, this experiment did not reproduce exact conditions of
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the particle bombardment present in the electrophotographic
environment, it provided some information regarding the nature of
photoconductor modification introduced by the bombardment
processes. In a corresponding experiment, photoconductor was
illuminated with a UV source providing the emission wavelength
and the energy dose corresponding to the UV exposure in our
experimental electrophographic set-up. Two UV sources were
used: a medium power broadband UV lamp with peak emission of
about 365 nm and a defocused 325 nm HeCd laser beam. The UV
wavelengths were selected to be strongly absorbed by the
polycarbonate. In both cases the energy density of UV illumination
was equal several uW/cm2, so it corresponded to the UV energy
density emitted by the Paschen discharge in an
electrophotographic environment, while the total UV dose
corresponded to the dose delivered by an extended plasma
exposure in our test system. Plasma UV energy density was
evaluated with the help of the aforementioned optical fiber —
calibrated spectrometer system.

Results and Discussion

The XPS analysis demonstrated that prolonged exposure of a
photoconductor to the charge roller generated plasma significantly
increased the oxygen concentration at the surface (Table 1). Even
when assuming that some of the surface oxygen is related to post-
experiment surface contamination, as presence of Si may suggest,
majority of the added oxygen is due to surface oxidation caused
primarily by the oxygen radicals and to a lesser degree by the
oxygen ions. Nitrogen atoms observed in the XPS spectrum
originate from dopant molecules uniformly distributed within the
polycarbonate matrix. Figure 1 shows that this oxidation
phenomenon is limited to the photoconductor's surface; the oxygen
increase does not extend beyond the top several tens of nm.

Table 1. Chemical composition of the organic photoconductor (XPS). Only
elements detectable by XPS are included.

Concentration (at.%) C 0 N | si"
Unused photoconductor 83 15 2 0
Used photoconductor (after 6hrs) 61 | 34.5 2 2.5
Used photoconductor after prolonged | g1 17 2 0
soaking that removed the modified surface
layer
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Figure 1. XPS measured photoconductor's oxygen depth profile after 6 hrs
plasma exposure.

Deeper region of the photoconductor has been tested with the
help of ATR-FTIR. IR spectrum of an unused photoconductor is
virtually identical with the spectra of an undoped reference
polycarbonate (Figure 2). The majority of the observed features
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can be associated with the specific vibrations of a Bisphenol-A
molecule (polycarbonate monomer) or polycarbonate network [2].
Prolonged plasma exposure in our experimental set-up doesn't
change the IR spectrum, except for the region of 3000 cm™ - 2700
em’!, where stretching C-H vibrations of the aliphatic methyl
(CH;) and methylene (CH,) groups occur (Figure 3). Methylene
groups, though not present in a model Bisphenol-A molecule, can
be frequently observed in polycarbonate as part of the end- and
side-groups of the polycarbonate macromolecules (Figure 3).
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Figure 2. ATR-FTIR spectra of: (a.) new photoconductor, (b) photoconductor

after an extensive use, (c) reference polycarbonate .Insert shows region of
intense absorption associated with carbonyl groups.
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Figure 3. C-H stretching region (ATR-FTIR): (a.) new photoconductor, (b)
used photoconductor (charge roller), (c) used photoconductor (scorotron), (d)
reference polycarbonate. Components of the aliphatic C-H stretching have
been identified. "used": photoconductor has been exposed to plasma for 6
hrs.

ATR-FTIR spectra shown in Figure 3 and in the subsequent
figures have been normalized with respect to the highest
absorption peak in this spectral region. The typical ratio of the
CH3/CH, peak heights, hereafter called ¥, is about 1.55 for both
asymmetric and symmetric stretching. The ¥ value gradually
decreases as the photoconductor is exposed to the plasma
indicating changes of the chemical bond arrangement within the
subsurface layer probed by the ATR-FTIR (Figure 4). Eventually,
after a prolonged plasma exposure, the ¥ reaches steady state
indicating that plasma-induced bond modification within the
subsurface region is a self-limiting process. This evolution of the
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VY is accompanied by the well understood [3] change of the
photoconductor's surface energy manifested by decreasing H,O
wetting angle (Figure 4). These changes have always been
observed during the prolonged plasma exposure of the
photoconductor and, due to simplicity of the ATR-FTIR
measurement, the ¥ value has been used as a routine indicator of
the photoconductor modifications.
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Figure 4. ¥ parameter and photoconductor's wetting angle as a function of

plasma exposure time. W reaches the steady-state after approximately 4
hours.

Large ¥ change caused by the plasma exposure suggests that
the surface region may have completely different properties than
the underlying, undamaged photoconductor, and that it could be
removed with a proper solvent. This observation was tested by
either wiping the photoconductor with a cloth wetted with a
solvent or by soaking the photoconductor in a solvent for up to 15
minutes. The seconds approach was preferred because it avoided
accidental scratching of the relatively "soft" photoconductor's
surface. Only the solvents that did not attack the polycarbonate
were used. Many of the typical organic solvents removed the
modified surface region and even wiping with a cloth soaked with
water provided its partial removal, as demonstrated by the ¥ value
(Figure 5). The corresponding depth profiling (Dektak) of the
selectively removed modified region provided an estimate of its
thickness, equal approximately 150 nm - 200 nm.
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Figure 5. Evolution of the C-H stretching signal during the plasma exposure
and subsequent removal of the modified surface layer: (a) new
photoconductor, (b) used photoconductor (4 hrs exposure), (c) used
photoconductor after soaking in isopropyl alcohol, (d) used photoconductor
after wiping with H,O.

The aforementioned experiment involving prolonged UV
illumination resulted in photoconductor's modification similar to
the changes caused by the prolonged plasma exposure in our
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experimental set-up (Figure 6). Interestingly, the corresponding
experiment, where photoconductor was subjected to particle
bombardment in a Ar-O, plasma etcher, provided a similar
changes of ¥ only within a narrow Ar/O, range (Figure 7).

ATR-FTIR absorbance (a.u.)

3000 2950 2900 2850
wavenumber (cm-1)
Figure 6. Evolution of the C-H stretching signal caused by the long term UV
irradiation (continuous illumination for 3 hrs using 325 nm monochromatic
source with energy density of approximately 5 uW/em?®): (a) new
photoconductor, (b) photoconductor after UV exposure. Similar result was
obtained when a broad spectrum UV source with emission centered at 365
nm and corresponding energy density was used.
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Figure 7. Modification of the photoconductor's surface region under the Ar/O,
plasma exposure, as demonstrated by the changes of the aliphatic C-H
stretching signal: (a) new photoconductor; (b), (c) and (d) represent
photoconductor exposed to the plasma with the respective Ar/O;, ratio equal
50:50, 20:80 and 80:20. Plasma exposure time was equal up to 10 minutes.

These results suggest two major processes occurring within
the photoconductor when exposed to Paschen discharge plasma in
an electrophotographic environment. Neutral and charged
energetic particles and UV photons from the plasma discharge
region impinge upon the photoconductor's surface breaking
chemical bonds and forming unstable, reactive molecular species
undergoing further reactions in search of the respective energy
minimum. These reactions occur at depths corresponding to the
respective penetration ranges. Radicals, electrons and ions are
primarily limited to a shallow surface region, while UV photons
can penetrate at least several hundred nm below the surface.
According to previous reports [4,5] cracking of the benzene rings
within polycarbonate may be the main source of the newly formed
aliphatic species. This reaction is more energetically favorable
than breaking of the O-(C=0)-O carbonate groups in
polycarbonate [6,7]. Unstable molecular species rapidly evolve
into aliphatic CH, groups that are then likely associated with the
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polycarbonate macromolecules. ATR-FTIR measurements show
that vibrations associated with the carbonate groups, observed in
the range 1800 em! - 1700 em™ and 1250 em™ - 1200 cm™,
remains relatively constant throughout the plasma exposure
(Figure 1). At the same time a signal from the aromatic C-H
stretching becomes weaker while the aliphatic C-H stretching
absorption increases demonstrating that the ratio of aromatic to
aliphatic carbon decreases within the volume probed by the ATR-
FTIR (Figure 3). This reaction slows down after long enough
plasma exposure, as the majority of benzene rings within the
region reachable by the UV photons have been broken and the
ratio of aromatic to aliphatic C-H groups reaches an equilibrium
steady-state. Therefore, the thickness of the photoconductor's layer
with altered properties (approximately 200 nm) corresponds to the
UV penetration depth (150nm - 300 nm). This conclusion is
further supported by the observation that aromatic C-H stretching
is still visible (it originates mainly from the region further below
the surface than the UV penetration depth, as the ATR-FTIR
probing depth is approximately 400 nm) and that the decrease of ¥
value ceases after a very long plasma exposure.

Reactive molecular species formed at the surface of
photoconductor undergo reactions with readily available oxygen
radicals forming a variety of compounds containing C-O groups,
as indicated by the XPS results. However, due to continuous
surface bombardment with energetic particles, these compounds
are likely sputtered away from the surface. Therefore, only a very
thin oxygen-rich layer (Table 1 and Figure 1) can survive on the
surface of photoconductor.

In addition to the present work primarily focused on the
charge roller- based electrophotographic system, preliminary
evaluation has also been made for the case when scorotron was
used instead of the charge roller. Although the scorotron plasma
generation mechanism is quite different from the charge roller, the
photoconductor exhibits similar degradation manifested by the ¥
decrease after an extended exposure. It appears that even though
the energy of scorotron-generated particles impinging upon the
photoconductor may be lower than in the case of a charge roller,
scorotron likely produces copious amounts of the UV photons
degrading the surface region of an organic photoconductor.

Conclusions

Goal of this work was to elucidate degradation mechanism of
a commercial organic photoconductor within a modern
electrophotographic environment aimed at the high-speed, high-
throughput applications. It was observed that the prolonged
exposure of the photoconductor to energetic particles and UV
photons originating from the discharge region caused significant
structural and compositional changes within the region up to
several hundred nm below the surface of the photoconductor,
corresponding to the UV penetration depth. The cracking of the
aromatic carbon rings appears to be the major mechanism driving
these changes. Broken bonds rearrange themselves into most stable
configurations leading to increase of the aliphatic CH, species
within the bulk of the modified region, while the surface reactions
with oxygen radicals result in formation of multiple C-O bonds
near the surface. Similar degradation mechanism occurs regardless
of whether charge roller or scorotron are used for charging of the
photoconductor.
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