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Abstract

In this paper a number of selective sintering methods suitable
for inkjet printed nanoparticles are demonstrated on two different
coated papers. The selective methods demonstrated here are
electric current heating, microwave sintering and photonic curing.
As a reference, conventional heat chamber sintering is also
included. Conductivity measurements and studies of sintered
structures with optical and scanning electron microscopy are
performed, as well as a qualitative evaluation of how the heat-
sensitive substrates are affected. The purpose is to analyze
characteristics of each method and gain insight in how different
process parameters affect overall performance and reliability.
With heat chamber sintering the best achievable conductivity
without substrate deformation corresponded to less than 20% of
pure silver. With some selective methods, conductivity reached
well above 50% of pure silver.

Introduction

In functional printed applications where high conductivity of
structures is needed, such as antennas for RFID tags, metal
nanoparticle inks are commonly used. To meet conductivity
requirements, sintering is typically necessary, in which the
structures are heated in order to evaporate carrier solution and fuse
individual particles together to form a continuous layer.

Metal nanoparticles have melting points much lower than the
corresponding bulk metal because of thermodynamic implications
of the very large curvature of the particle surface. Still, a common
problem with traditional convection heating is that many substrates
such as coated papers and plastic films have softening points
below the required sintering temperatures, and therefore cannot be
completely sintered without deforming the substrate. Therefore
selective heating of the conducting layers with minimal heat
transfer to the substrate is highly desirable.

Traditional sintering in an oven or heat chamber relies on heat
transfer mainly by convection. Convection sintering gives a high
degree of control and predictability and has been used extensively
[1], [2]. Because the metal and substrate are equally exposed, this
method has severe limitations for heat sensitive substrates such as
coated papers and common plastic films.

Electrical sintering as a method in printed electronics
developed quite recently [3]. The concept is to run electric current
through the conducting structure, in which heat will develop
because of resistive losses.

Heating by microwaves is an interesting alternative when the
printed structures are thinner than the penetration depth of silver at
the frequency of interest. Microwave heating is a rather unusual
method but some investigations have been done [4], [S].
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Photonic curing refers to the process of exposing the metal
film to pulses of high power light [6]. With laser sintering, high
power can be concentrated to a very small area, and the precise
control of the beam location and power makes the method very
flexible, although quite complicated and expensive [7], [8]. Other
methods previously described is plasma sintering [9] and chemical
sintering [10].

Experimental

Conducting lines of dimension 20 x 0.4mm were printed with
the Dimatix 2831 piezoelectric inkjet system. A Dimatix 11610
10pL cartridge was used with a nozzle voltage of 24V and a
suitable waveform supplied by the ink manufacturer. Drop spacing
was set to 20um with a nozzle and platen temperature of 28°C.
The polar silver nanoparticle ink DGP 40LT-15C from Advanced
Nano Products was used on two coated papers; the photo paper
‘Platinum PT-101" by Canon and the laser printer paper ‘Silver
Image Gloss’ by M-real. The lines were dried in air for 2 hours
before sintering. The thickness of the printed layer was measured
to approximately 0.7um with a d3100 atomic force microscope
from Digital Instruments. This value was used in the resistivity
calculations. All resistance measurements were averaged over 5
samples using a Keithley 2611 Sourcemeter in 4—point mode. Each
sintering method was evaluated using both papers.

The convection sintering was made with a Pol-Eko SLW53
microprocessor controlled heat chamber with circulating fan.
Samples were placed in the middle of the chamber.

Microwave sintering was done using a modified consumer
microwave oven, Whirlpool AMW232 with a 2.46GHz magnetron.
The modification was made by installing a variable transformer to
control the anode voltage of the magnetron, giving the possibility
of very low output power levels and fine tuning of the output
power.

Electrical sintering was performed by programming a
Keithley 2611 sourcemeter. On-off time, current limit and start
voltage was selected for each experiment, and simultaneous
measurement of voltage and current during sintering was made in
4-point mode. The start voltage was set to approximately half the
initial resistance.

Photonic curing was conducted by Novacentrix using their
PulseForge™ 3100 production model.

After sintering, all samples were visually inspected for
substrate deformation. Fragility of substrate and conductor was
examined by mechanically bending the substrate repeatedly,
followed by electric checking for resistance increase or conductor
break.
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Results and discussion

With convection sintering it was found that the temperature to
a large extent defines the result and is more important for the
resulting resistivity than the time, as seen in figure 1-2. In most
cases less than 10 minutes was sufficient to reach final resistivity
of each tested temperature, longer times only degenerated the
substrate. For example, heating for 30s at 180°C resulted in
slightly lower resistivity than 60 minutes at 150°C.

As expected, substrate deformation was a limiting factor with
the convection sintering. The photo paper was the most heat
sensitive, showing mechanical deformation such as multi-
directional curling and coating loosening from the substrate base.
The coating also stiffened and became fragile, leading to break in
the conductors (Fig.8F). The highest safe temperature was found to
be 110 °C, although 130°C was acceptable up to 30s. This resulted
in a resistivity of 10.7uQcm, corresponding to 15% of the
conductivity of pure silver.

The laser-printer paper proved to be much more heat
resistant, only beginning to show a slight color change after 10
minutes at 180°C. These conditions resulted in 8.9uCcm or 18%
of bulk silver.
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Figure 1. Convection sintering with photo paper.
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Figure 2. Convection sintering with laser paper.
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Successful electrical sintering on the photo paper was found
to have a current maximum of about 1.5A corresponding to over
5kA/mm? current density. At this current, the sintering process
occurs very rapidly, leading to a narrow effective time window
(Figure 4). Just a few milliseconds beyond the 115ms maximum,
the conductors will overheat and deform. For a more controlled
and predictable process a lower current is preferable. The most
effective sintering conditions for these samples were found to be
0.9A and 1s where the resulting conductivity reached well above
50% of bulk silver without substrate deformation. Microscope
inspection indicated a uniform change in color, suggesting that the
current is evenly distributed in the conductor during sintering
(Fig.8A).

With the laser paper, a higher initial voltage of 20V was used
because of the higher initial resistance. The initial reaction was
therefore quicker, with a peak power of 15W and a tenfold
reduction in resistivity within 0.1s. Most effective sintering times
were found to be shorter, about 0.5s with a current around 1A,
which resulted in conductivities near 40% of bulk silver.
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Figure 3. Dynamic measurement during electrical sintering on Canon paper.
Current limit 1A and start voltage 7V. Note that resistivity drops further after
current is stopped at 1s.
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Figure 4. Electrical sintering with photo paper.
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Figure 5. Electrical sintering with laser paper.
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Photonic curing was carried out by using pulse lengths in the
0.1 — 10ms range. The most effective exposure resulted in a
conductivity corresponding to 42% of bulk silver for the photo
paper and 33% for the laser paper. There was no substrate- or ink
degeneration detected for these exposure conditions (Fig.8E). The
main factor limiting the exposure on the photo paper was
delamination of the silver film, i.e. the film was separated from the
paper above a certain power level (Fig.8G). With the laser printer
paper the delamination occurred at a higher power, at the coating-
paperbase interface, indicating a strong ink —substrate adhesion
(Fig.8H).

Sintering with the microwave oven gave rise to a range of
practical problems. First of all an examination of the field
uniformity was made. It was found that the power is highly
varying in space, in the X-Y plane parallel with the oven floor, but
even more so along the Z axis perpendicular to it. A large power
peak was found 30mm above the floor (corresponding to Y4
wavelength). Further, the physical direction of the sample was
very important. The largest power was absorbed when the sample
was placed along the X-axis (left-right direction). Almost no effect
was observed in the Y-direction. Also the size and shape of the
structure was found to be an important factor.

Note in the overexposure example (Fig.8D), that parts of the
structure are subject to spectacular overheating where other parts
are undamaged (right measurement pad). The conductor-field
interaction is complex and difficult to predict and equalization of
temperature by heat conduction is apparently not sufficient. The
metal structure may be seen as an antenna, for which size, shape,
location and direction will have influence on the coupling and
energy transfer with respect to the electric- and magnetic field. In
the experiments, each sample was placed in the same spot in the
bottom middle of the oven, along the X-direction.

Effective time-power combination for these samples was
found both in the lowest power range at 5-15s and at high power at
3s or below. Although very high conductivity was achieved at the
longer exposure times or higher power levels on the photo paper,
all of those samples were brittle and broke when bending the
papers. With the criteria of acceptable physical reliability,
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approximately 40% of bulk silver conductivity was reached for the
photo paper and 35% for the laser paper.
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Figure 6. Microwave Sintering. Relative power was calculated by measuring
the temperature difference of 15ml of water heated in sample location.

Fig.7 shows comparative SEM pictures of unsintered,
convection heated and electrical sintered samples on both papers.
With convection heating up to 150°C, no physical change of the
nanoparticle layer is apparent. This indicates that sintering is in an
early stage and the increased conductivity is mainly due to
evaporation of solvent and dispersants in the ink. After electrical
sintering for 1s at 1A, the nanoparticles have evidently undergone
a physical transition, aggregating into larger clusters and forming a
continuous layer, explaining the large drop in resistivity.

i 1 1
unsintered. B: Laser paper,
unsintered. C: Photo paper, 110°C 3min. D: laser paper, 150°C, 20min. E:
Photo paper electrically sintered at 1A, 1s. F: Laser paper electrically sintered
at 1A, 1s.
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We note that these four types of sintering processes fall into
three separate feedback mechanisms: Positive, negative, and
neutral. Microwave and electrical sintering are positive feedback
techniques in that as a portion of the film becomes more cured, the
curing rate at that point increases which may lead to overheating
or inhomogeneous curing of the film. The convection sintering
method is neutral in its feedback in that the cure rate is only a
function of the oven temperature. Photonic curing can be seen as a
negative feedback process in that as the film becomes more cured,
its reflectance increase, decreasing curing rate and limiting
excessive curing.

G

Figure 8. Sintered samples. A: Electrical sintering on photo paper at 1A, 1s.
B: Microwave sintering on laser paper, 3s, rel.power 0.9. C: Electrical
overheating on photo paper 1A, 1.2s. D: Microwave overheating on laser
paper, 5s, rel.power 0.9 (note undamaged pad to the right) E: Photonic curing
on photo paper at optimized exposure. F: Convection sintering, 130°C, 1min.
on photo paper (deformation in form of cracks in coating layer) G: Photonic
overexposure on photo paper. H: Photonic overexposure on laser paper.

Conclusion

When heat sensitive substrates are used, a selective sintering
method with minimal heat transfer to the substrate is preferred.
Each method has its application area and set of process parameters
that needs to be optimized for the specific combination of ink and
substrate. Not only is the resulting conductivity important but also
the reliability and durability of the sintered metal-substrate
combination, as well as the adaptability from a production point of
view.

Convection sintering was limited to moderate temperatures
due to substrate deformation, particularly on the photo paper
where cracks in the coating layer appeared above 110°C. Of the
four methods tested, conductivity with convection sintering was
the lowest.

With electrical sintering, the highest conductivity was
achieved. However, as a contact method it may be complex and
expensive to integrate in a production environment, and is further
complicated if variations in conductor pattern or size is present.

NIP25 and Digital Fabrication 2009

With photonic curing, the conductivity on the laser paper
was almost as high as on the photo paper. Delamination was the
primary result of overexposure, indicating that sintering
performance on the photo paper was limited by weaker ink
adhesion.

Microwave sintering proved powerful, but was difficult to
control, being sensitive to many parameters such as location,
shape, and direction of the sample. Non-homogeneous sintering
and fragility of the sintered metal was a problem. Using a more
advanced microwave system with greater control over frequency,
field distribution and short sintering times could be beneficial.
Computer simulations would also be a valuable complement for
looking further into microwave sintering.
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