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Abstract 
One of the greatest challenges in fabrication of plastic 

electronics devices by printing metallic nanoprticles is obtaining 
highly conductive patterns at sufficiently low temperature which 
will not damage the polymeric substrate. However, to date, 
sufficient conductivity of silver patterns was achieved only after 
prolonged heating at elevated temperatures, thus limiting 
fabrication of plastic devices only to heat resistance polymers. 

We report on a discovery that assemblies of silver 
nanoparticles, can undergo a spontaneous two-dimensional 
aggregation-coalescence process, even at room temperature. The 
surface coalescence of the metal nanoparticles leads to sintering 
and eventually to electrical conductivity, much below the melting 
temperature of the bulk silver. This process is triggered by surface 
charge neutralization of the nanoparticles, by using a variety of 
charged flocculants, and takes place in thin layers of various 
substrates, such as plastic and paper. The resulting high 
conductivity, 20% of bulk silver, enabled fabrication of various 
devices, as demonstrated by a flexible plastic electroluminescent 
ink-jet printed device.  

Introduction  
Fabrication of electric circuits on flexible and heat-sensitive 

substrates such as paper and packages has attracted significant 
interest as a pathway to flexible and low-cost devices [1, 2]. Ink-jet 
technology can be utilized for direct printing of conductive patterns 
[3], overcoming disadvantages of other printing methods such as 
lithography [4] and screen printing [3]. The inks used for the 
fabrication of conductive patterns by ink-jet printing usually 
contain silver nanoparticles (NPs) (surfactants and polymers) 
dispersed in water or an organic solvent by organic stabilizers [5, 
6]. After the printing and drying processes, a pattern composed of 
conducting metallic NPs capped with insulating organic stabilizers 
is formed. Due to the presence of insulating organic material 
within the NPs array, the number of percolation paths is limited, 
and the resistivity of the printed pattern is usually too high for 
practical applications. This obstacle is conventionally overcome by 
a post-printing sintering process, achieved by heating the printed 
substrates to temperatures usually higher than 200oC in an oven [7] 
or by applying microwave [8] or laser radiation [9]. This sintering 
phenomenon is usually attributed to the reduced melting point of 
NPs and to the high self-diffusion coefficient of their atoms [10]. 
However, due to the sensitivity of paper and many plastic 
substrates to high temperatures, such treatments are usually not 
possible for these substrates. Therefore fabrication of flexible 
devices is limited to a small number of heat resistant polymers 
such as polyimide. Obviously, there is a great need for a 
technology that will enable sintering of the metallic NPs without 
heating the substrate.  

Another obstacle of silver inks is their high cost due to the 
increasing price of bulk silver. Since copper is much cheaper than 
silver but possesses a very high conductivity, only 6% less than 
that of Ag, Cu NPs can be considered as an alternative to silver 
NPs. However, Cu NPs can not be used, due to their spontaneous 
oxidation at ambient conditions. In a previous report, we 
demonstrated that the formation of a thin silver shell on the Cu 
nanoparticles ,thus forming CucoreAgshell NPs, prevents their 
oxidation and enables their use at ambient conditions [11]. 

Here we report on a new technology to achieve sintering of 
such low cost CucoreAgshell NPs in a printed pattern even at room 
temperature, due to a spontaneous flocculation-coalescence 
process, which takes place on the desired substrate. The concept is 
based on replacing the heating step by a flocculation step which 
leads to the coalescence of the NPs. The result is a sintered pattern 
which possesses high electrical conductivity even at room 
temperature. In the first part of this paper, we describe the 
synthesis of the CucoreAgshell NPs. In the second part, we 
demonstrate a spontaneous two-dimensional coalescence process 
of these NPs and the high electrical conductivity obtained at room 
temperature. 

Result and Discussion  

Synthesis and Characterization of CucoreAgshell NPs 
The core-shell structure was obtained by a two step process as 

schematically presented in Figure 1. At the first step Cu 
nanoparticles (NPs) were synthesized in an aqueous medium by 
reduction of Cu(NO3)2 with an excess of hydrazine hydrate in the 
presence of polyacrylic acid sodium salt as a polymeric stabilizer, 
as reported previously [12]. Due to the large excess of hydrazine 
hydrate which serves as an anti-oxidation agent, the oxidation of 
the copper NPs was prevented, but only if their dispersion was kept 
in closed vials. Exposure of such dispersion to air led to immediate 
oxidation with color change from red to bluish green. 

At the second step silver ions (as a silver salt solution) were 
added, and by transmetalation reaction the reduction of silver ions 
by the metallic copper takes place directly on the surface of Cu 
NPs, thus leading to the formation of a silver shell on the copper 
core.  

In order to prevent the formation of free Ag NPs at the shell 
formation step, the hydrazine hydrate was consumed by the 
titration of acetaldehyde prior to the addition of silver nitrate.  

The obtained dispersion of CucoreAgshell NPs is characterized 
by an orange-reddish color. In contrast to the uncoated Cu NPs, 
while exposing these CucoreAgshell to air, their color remains 
unchanged even in an open vial and after drying as well. 
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Figure 1. Schematic illustration of CucoreAgshell NPs synthesis.  

 
Figure 2.  XRD pattern (a) and HR-SEM image (b) of the CucoreAgshell NPs, and a HR-SEM image of the NPs after the cores dissolution (c).The same scale bar 
for the both images 

High resolution scanning electron microscope (HR-SEM) 
image presented in Figure 2b reveals the formation of NPs with a 
diameter of 20 to 50 nm. The XRD pattern of these NPs (Figure 
2a) indicates the presence of both copper and silver, with fcc 
crystal structures (not their alloy). In order to confirm the 
formation of silver shells on the copper cores, ammonium 
hydroxide, which is capable of dissolving copper  [13, 14], was 
added to the aqueous dispersion of the NPs. Figure 2c 
demonstrates that such treatment of the core/shell NPs results in 
the formation of some hollow silver nanoshells, probably in 
particles where the shell was not complete.   

Sintering at room temperature 
An aqueous ink containing CucoreAgshell NPs was ink-jet 

printed on a glass slide by an office Lexmark printer (Z 615) 
without any modification. It was found, as expected, that after 
drying at room temperature, the printed pattern was composed of 
closely packed non-sintered CucoreAgshell NPs and therefore, 
possessed a very high resistivity, more than a million times of that 
for the bulk copper. The polymeric stabilizer (PAA) adsorbed onto 
the NPs surface causes the NP to have surface charges, which 
enables their stabilization while in dispersion (electro-steric 
stabilization). Indeed, ζ-potential of the NP’s was -32(±4) mV (at 
pH 8.9), which explains their stability in dispersion and non-
contact after deposition. Figure 3 presents ζ-potential of NPs in 
aqueous dispersion as a function of pH. It can be seen that the 
negative ζ-potential of the original NPs decreases with the decrease 
of pH. At a pH of 2.0 or lower, the ζ-potential value is very small, 
and a rapid precipitation occurred due to aggregation of the NPs. 
Particles size measurements by dynamic light scattering (DLS) 
indicated a size increase from 30nm up to about 2 μm (Figure 3). 

 
Figure 3. ζ-potential (open circles) and average particle size (filled circles) of 
the CucoreAgshell in aqueous dispersion, as a function of pH and a schematic 
illustration of the NPs in their stabilized form (left) and after aggregation (right). 

The decrease in the absolute value of  ζ-potential at low pHs 
results from protonation of the carboxylic groups of the adsorbed 
polymer. At pH values higher than ~4 (the pKa of acrylic acid is 
4.25), the carboxylic groups are de-protonated, thus providing the 
NPs a large negative ζ-potential, which stabilizes the NPs. 
However, at a lower pH, the carboxylic groups are protonated 
(COOH), the ζ-potential decreases and flocculation and 
aggregation of the NPs occurs. 

Based on the results obtained in the liquid dispersion, this 
flocculation process was performed directly on the printed 
substrate. Therefore, the ink containing CucoreAgshell nanoparticles 
was printed on an Epson photo paper, which was pre-treated with 8 
wt% phosphoric acid solution (by a 6 μm application rod). 
Comparison of HR-SEM images of the patterns printed on the 
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paper with or without phosphoric acid pre-treatment (Figures 4a 
and b), clearly shows the effect of the acid : not only that the 
pnanoparticles aggregated, they were even sintered, due to the 
close contact between the particles during the drying of the printed 
pattern, at room temperature.  Figure 4c shows an example of an 
RFID antenna printed on this paper, by the Lexmark printer. As 
seen from SEM image of the cross-section of the pattern, (Figure 
4d), the thickness of the printed pattern is about 1.2 μm.   

 
Figure 4. CucoreAgshell NPs printed on Epson photo paper (a) and on the 
same paper pre-treated with phosphoric acid (b). An RFID antenna printed on 
Epson photo paper (c) and SEM image of the cross-section of the printed 
pattern (d).  

Sheet resistance measurements revealed, as expected, that the 
sintering is accompanied by a drastic decrease of the resistance 
down to values of 3 (±0.2) Ωsquare. It should be emphasized that 
such low sheet resistances were reported until now only for 
metallic patterns which were heated at temperatures ≥150oC for 
prolonged time, while in the present study it was achieved 
spontaneously at room temperature. 

 In summary, we demonstrated how the well known 
flocculation process, which is widely reported for colloidal 
systems, can be utilized on a solid surface, leading to sintering of 
metallic NPs without heating. This process can be simply 
controlled by tuning the surface properties of the NPs and the 
substrate and it enables obtaining conductive patterns on low cost, 
heat sensitive substrates. We expect that this process can be 
performed in various modes, such as printing the flocculation agent 
after printing the metal nanoparticles. This concept, combined with 
the formation of the low cost copper nanoparticles, may open new 
possibilities for applications in flexible and plastic electronics. 
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