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Abstract

When fabricating electronic devices, an all-additive solution-
based process would have the lowest cost and complexity, because
it employs the lowest number of processing steps and it consumes
the least amount of process material. However, there are still many
challenges on the way to achieving electronic circuits by such
processes. Here, we present inkjet printing approaches to fabricate
displays and sensor circuits.

Introduction

Printing methods enable the direct fabrication of electronic
circuits on flexible substrates and open up the opportunity for roll-
to-roll processing which is promising for lowering the
manufacturing cost.

Recently, printing methods have been explored in various
fields of electronics. For display fabrication, screen printing was
used to pattern the active-matrix backplane in a liquid powder
display [1]. Roll printing, based on a gravure-type printing method,
was explored for resist printing to replace photolithography in the
fabrication of a liquid crystal display (LCD) [2]. Radio frequency
identification (RFID) tags have been printed using a variety of
printing methods and low-cost sensor applications are finding
increased interest [3,4].

Here, the focus will be on inkjet printing for fabricating
flexible display backplanes used in electrophoretic displays and
flexible printed sensors for detecting explosions in the battle field.

Inkjet Printing

Amongst several printing methods, inkjet printing has the
advantage of variable digital data printing and non-contact material
deposition. It is also well suited for prototyping and materials
research because of the small amounts of material consumed.
Inkjet printing has been explored for a variety of electronic
applications such as for the patterning of large-size color filters in
displays or as an alternative to photolithography [5,6]. Organic
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Figure 1. Inkjet printed silver on a polymer surface with increasing surface
energy (from a - d). In a), the ink is repelled and in d) continuous lines are
formed with a width of 40-50 um.
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Figure 2. Flexible electrophoretic display with printed active-matrix backplane.
The inset shows a close-up image of the printed pixel circuit. The pixel TFTs
are based on the organic semiconductor PQT-12.

semiconductors have been deposited by inkjet printing, particularly
for organic light emitting diode displays and for pixel transistors in
active-matrix backplanes [7-9]. Within these applications, there are
still many challenges in optimizing the printing processes. Printing
inks have to be formulated to be reliably jettable, which requires
optimization of the ink viscosity and surface tension. The solutions
must also exhibit stability to prevent clogging of the inkjet nozzle
and the inks should be tuned to show reduced coffee stain effects
upon drying of the printed drops.

Moreover, the surface tension of the inks, together with the
surface energy of the print substrates, has to be well coordinated to
obtain the desirable print features. In Fig. 1, an example of the
dependence on the surface energy of the substrate of a jet-printed
pattern is shown. Here, two parallel lines were printed with a silver
nanoparticle ink. The lines break up into individual droplets on a
hydrophobic (low surface energy) surface (Fig. la). When the
surface energy is increased by treatment with ozone, the lines
become increasingly continuous. An optimum point is achieved
where the printed lines remain narrow and continuous after drying
of the ink.

With our custom-built inkjet printing systems, we achieve a
drop placement accuracy of +/-5 um and we have printed lines of
~40-50 wm width with 10 um spacing.

Printed Active-Matrix Pixel Circuits

Fig. 2 shows an electrophoretic display with a printed flexible
active-matrix backplane and electrophoretic film from E-Ink
Corporation. Since the electrophoretic ink has Dbistable
characteristics, the image remains visible after disconnecting the
driver electronics. The pixel circuit of 50x50 pixels was fabricated
on a 5 mil thin polyethylene naphthalate (PEN) substrate with
process temperatures not exceeding 160degC. The inset in Fig. 2
shows a close-up photograph of printed pixels. The pixel pitch was
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680 wm (37ppi) which is adequate for poster-type displays that are
viewed from a distance. The pixel circuits were fabricated in an
all-additive solution process in which the metal for the gate- and
data-layer and the organic semiconductor for the pixel thin-film
transistor (TFT) were deposited by jet-printing. A polymer gate
dielectric was deposited by spin-coating. The process resulted in
pixel arrays with good consistency regarding the feature definition
and with good registration between the layers. For the metal layers,
silver nanoparticles were printed from solution and subsequently
sintered. The pixel transistors are based on the polythiophene
semiconductor PQT-12 and PVP (polyvinylphenol) gate dielectric.
Transistor Ion/Ioff ratios of ~10° — 10° and a mobility of ~0.02-
0.08 cm?/Vs are achieved, which is sufficient for driving reflective
display media with a moderate refresh rate [10].

Although much progress has been made with printed displays,
challenges still remain. One is the achievement of higher
resolution. Another is the integration of conventional driver
circuits.

Field-shielded Printed Pixels

The maximum display resolution is affected by the pixel fill
factor (ratio of pixel pad area to total pixel area) which in turn is
limited by the minimum printed line and gap width. This is
illustrated in Fig. 3. Higher fill factors can be achieved with field-
shielded (multi-layer) pixel designs in which the data bus lines and
the TFT are at least partially covered by a top-layer pixel pad (Fig.
4a). A multi-layer pixel design requires additional processing steps
including via formation in a top layer dielectric which covers the
data bus lines. Others have formed vias in printed circuits using
solvent printing [8]. The concept shown in Fig. 4b is based on a
continuous layer of negative acting photopolymer as the top layer
dielectric. Contact vias are formed in the layer by jet-printing
opaque silver features that server as photomask. The photopolymer
is then exposed to light that crosslinks the un-masked areas and
subsequently the silver metal mask is removed together with the
un-crosslinked regions that form the vias. The silver mask and the
un-crosslinked polymer are removed in a single process step. After
formation of the via holes, the conductor for the via connection and
the top layer pixel pads are inkjet printed. Although this is not an
all-additive process, it is a simple approach that uses the same
printer for depositing the metal conductors and for printing the
metal mask. A field-shielded pixel design will enable the
fabrication of printed pixel arrays with 200 wm pixel pitch without
further reducing the printed line width of ~50 wm.

Fill factor: ~72% ~58% ~32%

increasing display resolution
decreasing fill factor

Figure 3. Printed pixel circuits with varying resolution. Towards smaller pixels,
the pixel fill-factor decreases (at constant printed line width) due to the smaller
relative pixel pad area.
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Figure 4. Field-shielded pixel design (a) and via process using a printing
approach in which printed silver acts as a photomask for the via region (b). The
shown top layer pixel pads function as a cover over the transistor region and
the data bus lines.

Connecting Driver Electronics

Because printed electronics is not capable of performing all
the tasks to drive a display, conventional electronic circuits such as
bus drivers and video signal processors, etc., have to be integrated
to form a full display. Pick-and-place technologies may be used to
attach integrated circuits onto the same flexible substrate that
contains the printed circuit. Fig. 5 shows an approach in which
inkjet printing is used to form electrical connections between a
printed electronic circuit and an integrated circuit with a ball-grid
contact pad array. After attaching the integrated circuit to the
substrate, a polymer is molded over the integrated circuit and its
contacts (here, solder balls). The molding step forms a polymer
ramp between the substrate and the contact level. In an optimized
process, the top surface of the contacts remains free of polymer.
Conducting lines are then inkjet printed over the polymer ramp to
connect the printed circuit with the integrated circuit. Because in
inkjet-printing the print head does not touch the print surface, it is
possible to print over such topographies. Also, due to the digital
nature of inkjet printing, the printing process can compensate for
placement inaccuracies of the integrated circuits.

Printed Sensors

Printing technology is also promising for inexpensive sensor
devices and currently we are developing printed sensor tapes to
detect blast events on the battlefield. It has been shown that
traumatic brain injury (TBI) caused by blast events is cumulative
and early detection is important. The goal is to attach flexible
printed blast sensor tapes to a soldier’s helmet and to record events
that can cause TBI over a period of 7 days. The sensor tapes
include accelerometers, pressure sensors, acoustic sensors, light
sensors and printed organic electronics to record and store the
sensor signals.

Fig. 6 illustrates the concept of a helmet mounted sensor tape.
The tape may be designed in branches so that sensors are
positioned in several locations on the helmet. Light sensors may be
positioned near the eyes, acoustic sensors near the ears and
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Figure 5. Formation of connections between printed electronics and a
conventional integrated circuit (IC). A molding process forms a polymer ramp
over which conducting traces are jet-printed to join the circuits (a). In b), a
close-up photograph is shown of a ramp with silver lines.

acceleration sensors may occupy three approximately orthogonal
locations for 3-axis acceleration sensitivity. Fig. 6b emphasizes
that a printed sensor tape may have a more complex shape to
enable stretching or conformal attachment to a variety of different
surface geometries.

Low-voltage Transistors

In contrast to the display backplanes (which require relatively
high voltages to drive the electrophoretic medium), low-voltage
operation is essential for the sensor tape. This is in part because the
tape is operated by a thin-film battery and high voltages are more
difficult to achieve. Moreover, it is due to the fact that the tapes are
mounted close to the human body and only low voltages are
permitted.

In order to achieve low-voltage transistor operation, a high
gate capacitance is required. This can be achieved with thin
dielectric layers and materials with high dielectric constant.
Amongst several approaches, we have explored atomic layer
deposition (ALD) of a hafnium oxide (HfO,) gate dielectric due to
its high dielectric constant. Fig. 7 shows the transistor curve of a
TFT with a bi-layer gate dielectric consisting of HfO, (100nm) and
a low-surface-energy polymer. The low-surface energy polymer
improves the molecular ordering of the organic semiconductor
PQT-12. The HfO, was deposited over the jet-printed silver gate
layer at 150degC in a Savannah series ALD system by Cambridge
Nanotech. Traditionally, ALD deposition is regarded as a slow
process and it therefore would be in contradiction to a printing
technology which favors fast and low-cost processing. However,
recently approaches to increase the throughput of ALD have been
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Figure 6. Concept of a flexible sensor tape attached to a helmet for
measuring blast events (a). In b), a stretchable version of the tape is
depicted.

reported using web or large-batch processing [11]. The combined
gate capacitance of the bi-layer dielectric was around 40nF/cm’
which is significantly higher than ~15nF/cm? which is typically
achieved with the PVP polymer dielectric. The TFT of Fig. 7
shows a good mobility and an on/off ratio of 10*-10° withina 10 V
gate voltage swing.

Sensor amplifier

Pressure, acoustic and acceleration sensors based on
piezoelectric readout were chosen for the sensor tape because of
the requirement for low power and because of the relatively simple
readout method. Piezosensors generate a voltage when mechanical
stress is applied. This voltage is then amplified and further
processed. Polymer piezoelectric materials such as PVDF or
PVDF-TrFE copolymer are particularly suitable because of their
mechanical flexibility, their ease of processing and because of their
high signal voltage.

As shown in Fig. 8, the sensor signal is amplified by an
inverter circuit. In Fig. 8a, the response curve of a printed inverter
is shown. This inverter was fabricated with p-type TFTs using
organic semiconductor material from Flexink, Ltd., and a thin
evaporated Parylene gate dielectric. At the driving conditions
shown in the figure, the inverter had a gain of ~2.

The inverter was combined with a pressure sensor made from
a suspended stainless steel membrane with a sensor layer
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Figure 7. Transistor curve of a low-voltage TFT with HfO, based gate
dielectric. The HfO, layer is deposited by ALD over a jet-printed transistor
gate. Together with a hydrophobic surface coating, a gate capacitance of
~40nF/cm? is achieved. The semiconductor is solution-deposited PQT-12.
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Figure 8. Inverter curve (a) and signal of a piezoelectric sensor with printed
inverter (b).The pressure sensor consists of a suspended steel membrane
with spin-coated PVDF-TrFE sensor film.

consisting of spin-coated PVDF-TrFE copolymer. Top electrodes
on the sensor layer were deposited by jet-printing of a conductor or
by sputter deposition through a shadow mask.

The sensor signal upon applying pressure was measured with
an oscilloscope via a 20 MQ resistor on the inverter output (Fig.
8b).

Summary and Conclusions

Printing methods are being explored for a variety of electronic
applications, mainly with the goal of lowering fabrication costs.
The specific application determines the requirements for materials
and device performance. Here, active-matrix pixel circuits as well
as electronics for blast sensor tapes was developed using inkjet
printing.

Inkjet printing has several advantages compared to other
printing techniques and the value of inkjet printing is particularly
apparent in the prototyping and development phase of devices
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where rapid changes of designs and of materials systems are
desirable. Also, the ability to print onto substrates with surface
topography enables novel processes.

For manufacturing the developed devices at low cost, inkjet-
printing may be combined with roll-to-roll processing.
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