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Abstract
This paper studies the problem of automatically aligning the

interconnections of integrated components in printed electronics
modules. During the process, molding material is deformed and
the components get displaced. Unless this is compensated on a
per-module basis, the ink jetted connectors do not reach their
targets. In this paper we propose a new connection redrawing
method that applies a smooth displacement function to each pixel
of the bitmap. Experiments show that using the new method, de-
formations are smoother, and the original shapes and intended
electrical behavior are better preserved.

Introduction
The current trend in electronics manufacturing is increasing

awareness of environmental implications of production and lo-

gistics. At the same time consumers are more demanding and

looking for products to serve their needs. Further, electronics in-

dustry is investing significantly on technologies that would allow

miniaturization of electronics assemblies. The key point in sat-

isfying these needs is to have a manufacturing technology that

is environmentally friendly, and allows miniaturization of elec-

tronics assemblies with high level of flexibility in demand-supply-

networks. One of the most prominent new technologies satisfying

these needs is printed electronics.

Printed electronics is an additive process and a relatively new

area of research, which uses traditional printing devices for inter-

connecting or manufacturing components. One of the fundamen-

tal technologies is inkjet printing, which relies on the principles

of traditional inkjets, but with special fluid materials targeted for

electronics. An example of an application of this technology uses

conductive nano particle and dielectric inks to create interconnec-

tion circuits between connector pads of integrated circuits (IC’s)

and discrete components that have been molded onto the back-

ground surface [6]. In this paper we call this concept a printed

module. One such module is shown in Figure 1, where there are

four IC’s molded into the background. The next step in the pro-

cessing would be to print the wiring shown on the right on top of

the module.

One of the most significant challenges in printed modules is

the accuracy of the manufacturing process. The errors in com-

ponent locations are mostly due to inaccuracy in the component

placement process, molding process related movement, and mold-

ing material shrinkage and bending. The latter category is typ-

ically the most significant one, and also the most unpredictable

[4].

The unpredictability of the deformation of the module is the

Figure 1. A sample multi-IC module (left) ready for printing the connections

(right).

Figure 2. Closer look at the module. The wiring targets are the golden pads

near the edges of the IC. They are detected automatically by the front end,

as seen on the right. Note, that the pad pointed by the red arrow is covered

by dust, and can not be found by the front end.

main reason why the traditional approaches [7] for printed circuit

board (PCB) manufacturing are unsuitable for this problem. In

PCB manufacturing the background materials are rigid, which al-

lows only translation and rotation. In our case, the substrate may

shrink or expand causing the components to move with respect

to each other. In addition to the complexity of the transformation,

most existing approaches concentrate on quality control instead of

dynamic modification of manufacturing data of individual struc-

tures, termed as dynamic correction in this paper. In our case, the

interconnection structure resides as an image in computer mem-

ory, which makes it easy to correct prior to printing.

In order to simplify the manufacturing, we do not assume

any alignment marks at the correction stage. Instead, we align

the wiring to the connectors of one IC (so-called calibration IC).

Because the IC is rigid, this gives us the correct scale irrespec-

tively of the image resolution. The wiring targets are always exact

for this particular IC, but more and more incorrect the further we

go from the calibration IC due to the compression of the back-
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Figure 3. Pairing the design data with the detection result. The figures show

the match with the true locations of the pads. The figure on the left shows a

part of the calibration IC, and the one on the right is a part of another IC.

ground material. An example of this is shown in Figure 3. It is

evident that using the designed locations, the printed connection

paths may end up in a wrong place. Detecting the true locations

and transforming the wiring accordingly will give an accurate fit

to the true situation.

In our earlier papers [2, 3], we have described a correction

system that uses neural network based image analysis for locat-

ing the connectors of the IC’s on the module. The correction

adapts the design data in the computer memory to each individual

module using a digital photograph taken from the module prior

to printing. The detection result of the front end is illustrated in

Figure 2. The back-end then couples the detected true locations

with the intended positions as described by the design data. Af-

ter coupling, the following layer is transformed to match the true

locations. Earlier, we proposed to correct the difference between

design data and true situation using an erase-and-redraw based

method for the wire endpoints [2]. However, this tends to pro-

duce sharp edges, and is applicable only in limited cases. In this

paper we propose a redrawing method that applies a smooth dis-

placement function to each pixel of the bitmap. The function is

constructed such that it translates the ends of the wires onto the

true connection points, and the amount of displacement decreases

radially. Experiments show that using the new method, deforma-

tions are smoother, and the original shapes and intended electrical

behavior are better preserved in the studied cases.

Smooth Correction Method
The proposed method processes the data on the bitmap level

and does not employ any information about the structure of the

design data; for example, the wiring and the dielectric layers are

treated equally. The method is based on a displacement func-

tion d : R
2 → R

2, which determines the amount of correction

needed in horizontal and vertical directions for each wire point

in the original image. The definition of the displacement func-

tion is based on the required displacement vectors δδδ 1,δδδ 2, . . . ,δδδ N
for each connection point (x1,y1),(x2,y2), . . . ,(xN ,yN). This dis-

placement data is obtained from the image analysis module, and

a set of such data is illustrated in Figure 3.

The most obvious requirement for the displacement func-

tion is that it should translate the ends of the wires onto the true

connection points. A secondary criterion is smoothness, which

ensures that the wiring does not have sharp discontinuities that

might harm the functionality of the module. The third criterion

is that the correction should have a finite support, i.e., the correc-

tion for each connection point should take place inside a limited

Figure 4. An example of smooth bump created with piecewise biquadratic

polynomial with (x,y) = (0.5,0.5), δδδ = [0.5 1]T and s = 0.4 (and R = 0.45).

area. Thus, the displacement function should be defined so that

it is continuous everywhere and decreases smoothly to zero when

moving radially away from each connection point.

The derivation of the displacement function follows the idea

of blobs [1]. Each wire end should create a smooth bump onto the

displacement function. We also require that all the bumps weld

together smoothly. It’s also important that the heights and loca-

tions of the bump peaks don’t interfere with each other, because

we want the wire ends to be translated exactly to their right posi-

tions to ensure a flawless connection.

First we need to decide the model of the bump, i.e., how

should the correction propagate and attenuate while moving away

from a wire end. An example of a function satisfying the above

requirements is the biquadratic polynomial defined as

bi(r) =

{(
r4

R4
i
− 2r2

R2
i

+1
)

δδδ i, when r < Ri,

000, otherwise,

where r =
√

(x− xi)2 +(y− yi)2 is the distance from the ith wire

end (xi,yi). Moreover, δδδ i = [δ (x)
i δ (y)

i ]T defines the displacement

between the ith wire end and its intended location and the parame-

ter Ri is the correction radius allowed for the ith connection point.

The correction radius Ri defines the area which is affected

by the correction. On one hand, it should be reasonably small not

to spread the deformation further than necessary. On the other

hand, the radius cannot be too small or the correction may be-

come impossible. Since the amount of required correction varies

in different areas of the module, it’s reasonable to make the radius

adaptive and dependent on the correction distance. This can be

achieved, for example, simply by setting the distance proportional

to the required correction radius: Ri = s‖δδδ i‖, where the constant

s is so called smoothness parameter. The larger the parameter s,

the larger the correction area and the smoother the correction. An

example bump is shown in Figure 4.

The second step is to create the actual displacement function

d by adding all the individual displacements together. This should

be done in such a way that the bumps of closely spaced connec-

tions points do not interfere with each other. This can be achieved

by introducing a weighting function wi for each bump bi:

wi(r) =

{
1

2r2R2
i −r4 − 1

R4
i
, when r < Ri,

0, otherwise.

The weight is zero outside the correction radius Ri and goes

smoothly towards infinity when approaching the bump center.
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(a) (b) (c) (d) (e)

Figure 5. Illustration of the correction process. The figure (a) shows the connection points and connectors before correction. In (b), the wire ends have been

erased and in (c) redrawn using the proposed method. For comparison, Figures (d) and (e) show the erasing and redrawing phases using the old method.

The actual displacement function is now defined as

d(x,y) = ∑i wi(x,y)bi(x,y)
∑i wi(x,y)

.

The definition1 is simply a weighted sum of all the bumps bi. The

weights are needed to ensure that the effect of the neighboring

bumps becomes negligible near a connection point (and that d is

smooth on the borders of correction areas). Otherwise, the super-

position of nearby bumps would make the translation too large,

and the wire ends would not reach their targets. An example of a

combined displacement function is shown in Figure 6.

After a displacement function has been established, the ac-

tual correction can be done. Figure 5 shows the stages of the

correction. In Figure 5(a) there is the original wiring bitmap. The

blue dots indicate the wire endpoints without correction, and the

red dots indicate the true target locations.

The first stage of the correction — illustrated in Figure 5(b)

— is to erase the falsely oriented wire ends. The erasing is limited

to only those pixels that, according to the displacement function,

have displacement big enough to make some difference, i.e., those

that have nonzero displacement.

After all the wire ends have been erased, each erased wire

pixel needs to be remapped according to the displacement func-

tion. Figure 5(c) shows the corrected wiring in the example case.

In Figure 5(d) and 5(e), the correction method is compared

to our earlier method [2], which simply replaces part of the wires

with straight lines so that the wire ends meet their correct loca-

tion. The new method clearly creates fewer short circuits and

avoids sharp corners, which may have an impact on the electric

properties of the result.

Experimental Results
An example result using the new and the old method is

shown in Figure 7. Figure 7(a) shows a part of the module ready

for printing. However, due to component drifting, the connec-

tors have translated, and printing the design bitmap directly will

result in failed connections, see Figure 7(b). Note that this dis-

placement cannot be corrected by translation, because that would

increase the errors on other components of the module (this is the

fit that minimizes the square error of the connection point loca-

tions without manipulating the bitmap).

1For simplicity, we have omitted two special cases when d is unde-
fined: when (x,y) is one of the connection points (xi,yi), we should define
d(x,y) = δδδ i, and when (x,y) is outside the radius Ri of any correction
point (xi,yi), we should define d(x,y) = 0.

Figure 6. A part of the displacement map used in Figure 7 (only vertical

displacement shown; the horizontal direction map is similar but with negative

peaks as the displacement is directed from right to left).

The correction results are shown on Figure 7(c) and Fig-

ure 7(d). The first one shows the result of the old erase-and-

redraw method, and the second one shows the result with the

smooth correction. By using the new method, there are no short

circuits, the deformations are smoother, and the detailed shapes

are preserved, such as the square-shaped end of each wire. Fig-

ure 6 illustrates the displacement map that was calculated in the

above example. As expected, the connector pattern is clearly vis-

ible.

The electrical performance of the interconnections was ver-

ified by simulations. Three line geometries were considered (see

Figure 8), a straight 550 μm line (reference), a 475 μm line includ-

ing a sharp corner resulting from the erase-and-redraw algorithm

(”1”), and a smooth 350 μm connection obtained with the smooth

correction algorithm (”S”). The simulations were carried using

CST Microwave Studio [5]. The conductivity and relative permit-

tivity of the substrate were set to typical values for printable mate-

rials [8], σ = 107 S/m and εr = 3.0. The conductor and substrate

thickness was t = 2 μm and h = 5 μm, respectively. The conductor

width was W = 50 μm resulting in 17.25Ω line impedance. The

lines were terminated to 17.25Ω discrete ports and the attenua-

tion between the ports was simulated. Figure 9 shows the results,

which indicate that for short interconnections, the effect of line

length is far more significant than the line geometry. In most prac-

tical cases the proposed smooth correction method minimizes the

resulting connection length, which is therefore a key property in

terms of performance. Thus, it produces the best performance in

terms of conductivity for the structures analyzed. More studies are

needed to analyze implications of shape to the performance and
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Figure 7. Original module ready for printing (a), and the simulated printing result without correction (b). The simulated result with erase-and-redraw correction

(c) and the result with the smooth correction (d).

(a) (b) (c)

Figure 8. Line geometries used in the electrical performance simulations.

Original line with no component displacement (a), misalignment corrected

using erase-and-redraw algorithm (b), and misalignment corrected using

smooth correction algorithm (c).

the implications of the selected correction distance to the overall

line lengths.

Conclusions
A smooth correction method for adapting printed diagrams

individually for each module was proposed. The new method is

based only on moving existing pixels to new locations, and there-

fore does not require any knowledge of the structures behind the

pixels. The earlier correction method [2] assumes that the objects

to be corrected are all thin wires with well defined endpoints. In

practice this is not always the case, and there are various structures

that the earlier method fails to correct because of this. Moreover,

as the earlier method erases and redraws the wire ends, it is nec-

essary to define the pencil used to redraw the connections.

One advantage in using a continuous displacement map de-

fined all over the design bitmap is that the same mapping can be

used to correct all printing layers in a similar manner. For exam-

ple, after the wiring has been printed, the following insulator layer

with vias onto the next layer can be transformed using the same

displacement function as the wiring layer.
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