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Abstract 
Barcode print payload density is significantly improved when 

the effects of the print-scan (PS) cycle are anticipated in the 
barcode elements before printing. The PS cycle generally causes 
dot gain, and thus the black portions of the barcodes expand 
relative to the white portions. Structural pre-compensation 
(StructPC) anticipates this effect by removing black pixels from the 
boundaries of the black elements (modules and calibrating 
sections) of the barcodes. In this paper, we varied the amount of 
StructPC from 0 to 6 pixels for 2D DataMatrix barcodes that were 
printed at 600 dpi. Module sizes were varied from 10 to 30 mils (6 
to 18 pixels at print resolution), using ECC 200 (~30% error-
correcting code). Test sets were printed on four types of printers. 
Each printer set underwent 2 additional PS cycles. We evaluated 
the optimal StructPC for each printer type after the combined 1, 2 
and 3 PS cycles. We used the same substrate (office paper) 
throughout. Our findings support the implementation of StructPC 
for 2D barcodes. For every printer, the smallest readable barcode 
size was obtained with StructPC applied. StructPC results were 
printer-dependent: optimally 2 pixels for the dry 
electrophotographic printer, and optimally 2-5 pixels for thermal 
inkjet printers. 

Introduction 
Structural pre-compensation [1] has been introduced as a 

method of anticipating printing-related effects on ink/substrate 
interaction. However, previous work has not explored how 
structural pre-compensation (StructPC) is optimized for a given 
printer/substrate combination, nor examined the effect of StructPC 
on the PS, or copying, cycle [2].    We present the results of an 
experiment designed to find the optimal StructPC for each of 4 
different printers using HP office paper. The design included 
consideration of the effects of the print-scan cycle by copying 
printed test sheets.  

 

Experiments Performed 
Structural pre-compensation (StructPC) removes black pixels 

from the boundaries of the black elements (modules and 
calibrating sections) of the barcodes. In our experiment, we varied 
the amount of StructPC from 0 to 6 pixels for 2D DataMatrix[3] 
barcodes that were printed at 600 dpi. Test pages were created by 
varying the size of symbols, consisting of 23 character payloads.  
We used DataMatrix symbol sizes from 10 mils to 30 mils (254-
762 micrometers (µm) or 6 to 18 pixels at print resolution) with 
ECC200. The error correction percentage was approximately 30%.   
Five barcodes of each size were generated using B-Coder Bar 
Code Graphic Generator, Version 4.0 [4].   

 
The generated test pages were then printed out on each of 

four different printers using HP office paper: HP Color Laser Jet 

3600, HP Desk Jet 6940, HP PhotoSmart C6280, and HP Desk Jet 
6127.  Once printed, the test pages were copied using a HP Laser 
Jet M9040 MFP with normal settings. To generate a second 
generation copy, we then copied the pages created by the first 
copy. 

 
The barcodes were read using an InData Systems LDS-4600 

reader with 405 nm w.p.e. LEDs for its light source.  Successful 
reading of all five barcodes of each size and within one second 
was required to consider the tested size as “readable”  

 

Results 
 
The following tables contain data collected from reading 

barcodes on the test sheets. These tables contain the smallest 
readable symbol (in mils) for each tested printer as well as for the 
first and second generation copies of the test pages. 

 

Table 1: Readability Values Different Printers – No Pre-
Compensation 
Printer Size of Smallest Readable Symbol (in mil=0.001”) 
 Original Print 1 PS Cycle 2 PS Cycle 
CLJ 
3600 

14 13 12 

DJ 
6940 

14 13 12 

PS 
C6280 

17 14 14 

DJ 
6127 

19 18 14 

 

Table 2: Optimal Structural Pre-Compensation (StructPC) 
Values for Different Printers, 1-Pixel Precomp 
Printer Size of Smallest Readable Symbol (in mil=0.001”) 
 Original Print 1 PS Cycle 2 PS Cycle 
CLJ 
3600 

12 10 10 

DJ 
6940 

13 13 12 

PS 
C6280 

15 14 13 

DJ 
6127 

16 14 14 
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Table 3: Optimal Structural Pre-Compensation (StructPC) 
Values for Different Printers, 2-Pixel Precomp 
Printer Size of Smallest Readable Symbol (in mil=0.001”) 
 Original Print 1PS Cycle 2 PS Cycle 
CLJ 
3600 

10 10 10 

DJ 
6940 

10 10 10 

PS 
C6280 

14 12 12 

DJ 
6127 

14 13 13 

 
 

Table 4: Optimal Structural Pre-Compensation (StructPC) 
Values for Different Printers, 3-Pixel Precomp 
Printer Size of Smallest Readable Symbol (in mil=0.001”) 
 Original Print 1 PS Cycle 2 PS Cycle 
CLJ 
3600 

10 10 11 

DJ 
6940 

10 10 10 

PS 
C6280 

12 12 12 

DJ 
6127 

11 11 12 

 

Table 5: Optimal Structural Pre-Compensation (StructPC) 
Values for Different Printers, 4-Pixel Precomp 
Printer Size of Smallest Readable Symbol (in mil=0.001”) 
 Original Print 1 PS Cycle 2 PS Cycle 
CLJ 
3600 

10 10 11 

DJ 
6940 

10 11 11 

PS 
C6280 

12 12 12 

DJ 
6127 

13 12 13 

 

Table 6: Optimal Structural Pre-Compensation (StructPC) 
Values for Different Printers, 5-Pixel Precomp 
Printer Size of Smallest Readable Symbol (in mil=0.001”) 
 Original Print 1 PS Cycle 2 PS Cycle 
CLJ 
3600 

11 12 12 

DJ 
6940 

11 12 12 

PS 
C6280 

11 12 12 

DJ 
6127 

12 12 12 

Table 7: Optimal Structural Pre-Compensation (StructPC) 
Values for Different Printers, 6-Pixel Precomp 
Printer Size of Smallest Readable Symbol (in mil=0.001”) 
 Original Print 1 PS Cycle 2 PS Cycle 
CLJ 
3600 

12 13 15 

DJ 
6940 

12 12 15 

PS 
C6280 

12 15 15 

DJ 
6127 

12 13 15 

 
 

The following figures illustrate the effect of the print-scan-
copy cycle. Figure 1 contains the curves for actual printed page, 
while figures 2 and 3 show the curves for the first and second 
generation copies, respectively. 

 
 

Printer Test - Originals
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Figure 1. Original printed tests – Smallest symbol (in mils) read for number of 
pre-compensated pixels. 

 

Printer Test - 1st Copy

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6

Precomp Pixels

S
m

al
le

st
 P

at
te

rn
 R

ea
d 

(m
l)

CLJ3600
DJ6940
PhtotoC6280
DJ6127

 
Figure 2. 1st Generation copy tests – Smallest symbol (in mils) read for 
number of pre-compensated pixels. 
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Print Test - 2nd Copy
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Figure 3. 2nd Generation copy tests – Smallest symbol (in mils) read for 
number of pre-compensated pixels. 

 

Discussion and Conclusions 
 
Table 1 demonstrates that barcode readability actually 

improves with 1-2 PS cycles when StructPC is not used. The 
implications are that, for readability purposes, printing the 
barcodes without StructPC gives the would-be counterfeiter a “free 
pass” to make a copy—their copy of the original, in fact, is more 
“authentic” to a barcode reader. These data indicate that, for the 
print technologies investigated herein, StructPC is important for 
brand protection and security. 

 
Table 2 contains the results using single pixel pre-

compensation. While the readable symbol size generally goes 
down (i.e. gets smaller) for all printers and their copies, the 
reduction is not significant and the problem of increased 
readability with the PS cycle is still apparent. 

 
  Table 3, showing results for two pixel pre-compensation, is 

more promising. Not only do readability sizes reach the limit of 10 
mils for two of the four printers, copying no longer improves 
readability for those printers as well. Tables 4, 5, and 6, illustrate 
the continuing trend of smaller symbol readability for pre-
compensation of 3, 4, and 5 pixels. Readability for 1-2 PS cycle 
generally remains the same or gets worse with pre-compensation.  

 
Tables 6 and 7 demonstrate that pre-compensation above 5 

pixels generally decreases readability for the smaller symbol sizes, 
both for the original print and the subsequent copies. Note, 
however, readability for the 1-2 PS continues to be the same or 
worse than the original.   

 
Figures 1 – 3 show the data for the original, first, and second 

copy tests for each of the printers. The purpose of these graphs is 
to show that the trend for pre-compensation is similar for all the 
printers: symbol readability size decreases after one pixel pre-
compensation until the smallest readable size (10 mils) is the 
smallest size chosen for this test. Readability size starts to increase 
after pre-compensation reaches six or more pixels. Therefore, the 
optimal StructPC was 2-5 pixels for this experiment.  

 
Tables 2-6 shows that StructPC accounts for improved results 

when the PS cycle is experienced and this should take away the 
“counterfeiter’s advantage”. However, even with best StructPC, 1-
2 print-scans can generally copy well. This indicates DataMatrix 
barcodes alone, as specified in the ISO standard [3], cannot 
generally provide copy deterrence, even with optimal StructPC. 
StructPC, however, is certainly warranted, as without it, copied 
barcodes actually read “better” than originals. 
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