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Abstract  
Understanding of ink-paper adhesion in LEP printing through 

interface investigation is presented. Relationship between 
macroscopic time dependent work of adhesion measurement, polar 
content of paper and ink surfaces, and interfacial acid-base 
interaction is revealed. Direct observation of the ink-paper 
interfacial interaction through ATR-FTIR measurement is 
described and C-O stretching band around 1152 cm-1 is shown to 
indicate acid-base interaction. Papers with high polar content 
exhibit strong intensity as well as reduction in the band location of 
the C-O stretch. Intensity ratio of C-O stretch around 1152 cm-1 

and a neighboring C-C stretch at 1168 cm-1 is shown to have a 
linear relationship with the total work of adhesion immediately 
after printing. 
 

Introduction 
Adhesion of materials to a substrate plays an important role in 

many processes, ranging from biological systems1 to industrial 
applications.2 Interfacial physico-chemical interactions are known 
to affect the desired outcome of a process.3  

With respect to advanced digital printing technology4, an 
excellent interfacial adhesion between a marking material, 
typically an ink particle, and a substrate, generally a paper or a 
plastic, can provide important print and page attributes – visually 
pleasant image quality, typically represented by high print 
durability for rub resistance, water and smear fastness, and overall 
throughput of a printing process. With the advent of high-speed 
digital commercial printing based either on the liquid- (L)5 or dry- 
(D) electrophotographic (EP) printing processes6, this becomes 
critical. 

Significant efforts have occurred to facilitate good adhesion 
of ink particles on a wide range of substrates. For example, 
thermal-induced fusing via mechanical interlocking of ink particles 
onto a substrate is known to facilitate reasonably good adhesion.5 
Besides, tailoring of interfacial electrostatic and van der Waals 
interactions have been demonstrated to enhance ink adhesion to 
substrates.7 In addition, coating of a polymer which acts as a 
primer on a substrate to facilitate hydrogen bondings (HBs) and or 
acid-base interactions (A-BIs) has been shown to noticeably 
improve ink-substrate adhesion, and hence the so-called paper 
gamut.8,9  

In particular, the HBs and or A-BIs are thought to play critical 
roles in a LEP printing process (Figure 1), and are clearly iterated 
by the total reversible work of adhesion10, WA, as: WA = Wab + 
Wd where WA is defined as the energy required to break a unit 
area of an adhesional contact. In this case, it is a measure of the 
‘fundamental’ adhesion between an ink layer and a substrate. Here, 
Wab denotes the acid-base interaction component while Wd denotes 

the dispersion component. The later typically involves Lifshitz-van 
der Waals interaction.11  

For most polymer-fiber systems, Wds are comparable and 
have been shown to not being able to account for the considerable 
adhesion strength (i.e. ‘practical’ adhesion) differences observed. 
On the other hand, promoting Wab by increasing the electron-donor 
capability at the interfaces generally results in an increase of both 
the fundamental and practical adhesion.11 However, its distinctive 
transient role in such an interfacial interaction is poorly 
understood, particularly for polymeric ink-paper interactions. Since 
ink-paper interactions in LEP are essentially a surface phenomenon 
and occur across a narrow interfacial boundary, probing of the 
interfacial interactions pose a significant challenge. Although 
surface-sensitive techniques such as attenuated-total-reflectance 
Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray 
photoelectron spectroscopy have been reported to successfully 
investigate various interfaces12-16, probing of ink-paper interfaces 
remains a significant challenge.  Two major showstoppers are the 
interferences coming from the non-uniformity of the ink layer and 
the uneven surface topography of the printed papers, especially for 
cellulose-based papers.  

We show here that intricate transient behavior pertaining to 
interfacial A-BI of ink particles and papers can be readily revealed 
via the ATR-FTIR spectroscopic technique upon careful control of 
the ink thicknesses on the paper.  Correlations with adhesion 
strength of an ink layer with various substrates, more specifically 
cellulose-based papers, agree well with the enhancement of A-BIs.  

 
 
 
 
 
 
 
 
 

 
Figure 1. Pictorial description of ink-substrate interaction. The figure on left 
(A) shows H-bond, while the figure on right (B) shows A-BI and H-bond. 

To mimic the acid-base interactions between an ink particle 
and a paper as depicted in Figure 1, we have adopted an ink 
particle which is a controlled blend of polymers like methacrylic 
acid (MAA) and acrylic acid (AA) copolymers with polyethylene 
and several other additives.17 The copolymers provided the desired 
carboxylic groups (-COOHs) while the hydroxyl groups (-OHs) 
and the amine groups (-NH, -NH2 or –NH3) were derived from 
four representative papers featuring varying concentrations of the 
latter two (Table 1). Common sources of C-OHs include polyvinyl 
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alcohol, polyethylene glycol, starch and carboxymethyl cellulose. 
One common source of amine in paper industry is 
polyethyleneimine which is often found to include primary, 
secondary and tertiary amines. These are typically used as binders 
or co-binders in the paper manufacturing process to be added to the 
coating pigments.8 When a spatially accessible -COOH on the ink 
particle’s surface comes in close proximity to a surface –OH or -
NH of a paper, either hydrogen bonding or acid-base reaction is 
anticipated to occur.  

Experimental 
I. Liquid electro-photographic printing  

Liquid electrophotography (LEP) is a variation from the 
conventional dry electrophotography (DEP).5 LEP uses a liquid 
toner for printing instead of the conventional dry toner particles 
typically used in DEP. As depicted in Figure 2, in a regular 
printing process, a photoconductor is first charged uniformly by a 
charging unit and is then followed by exposure to a laser beam (i.e. 
via a laser writer) to create a latent image on the photoconductor. 
A liquid toner which contains ink particles suspended in an 
isoparaffinic oil, is subsequently developed onto the 
photoconductor in a controlled fashion to form an uniform ink 
layer. The ink layer thickness on the photoconductor can be 
controlled by changing the electric fields in the developer units. 
The ink layer is then transferred to a so-called intermediate transfer 
medium which is maintained at an elevated temperature (~ 90˚C) 
before printing onto a piece of paper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Schematic of a LEP printing system. All measurements were done 
on a HP/Indigo 5000 LEP digital press. 

II. Sample configurations and X-ray photoelectron spectroscopy 
Table 1 lists four commercially available papers used in the 

present study. P1 and P2 are uncoated (UC) papers while P3 and 
P4 are coated (C) papers. One of the major differences between P1 
and P2 is a treatment of polyethyleneimine (PEI) on P2. In general, 
all of these papers exhibit acceptable or enhanced levels of 
practical adhesion for LEP printing. 

Surface elemental compositions were obtained via X-ray 
photoelectron spectroscopy (XPS) using the PHI Quantum 2000 
system. A monochromated Al Kα 1486.6 eV X-ray source was 
used for probing the surfaces. An analysis area of ~ 1300 by 300 
µm was used for the XPS measurements. All XPS data were 
quantified based on respective relative sensitivity factors. The 

relative percentage of the total polar components’ concentration on 
the paper top surface is also provided, as this ratio is sometime 
taken as an indication of the polar reactivity between ink and 
paper. 

 
III. Attenuated-total-reflectance Fourier-transform infrared 
spectroscopy (ATR-FTIR) 

ATR-FTIR spectroscopy was used to characterize the ink-
paper interface as well as the surfaces of papers and ink particles. 
All measurements were done on a Nicolet Nexus 870 spectrometer 
equipped with a liquid nitrogen cooled mercury cadmium telluride 
(MCT) detector. A single reflection Harrick Scientific Germanium 
IRE with an incident angle of 65° was used. Nitrogen was used as 
the purging gas. A resolution of 1 cm-1 with a total of 64 scans was 
used for all the measurements. 
 
 

 

 

Table 1. Atomic percent ratio of elemental carbon, oxygen and nitrogen 
among the four papers. 

IV. Adhesion Strength Measurement 
We have adopted a method similar to that as reported by Zhao 

et al.18 First, a pressure-sensitive 3M half-inch tape (no. 401B) was 
pressed onto an ink layer and then pulled with a specified 
transversal speed using a ChemInstruments AR1000 adhesion 
tester at an angle of 180o. When measurable detachment of ink 
particles was detected visually, the pulling force and the traversal 
speed (TS) of the pulling tape were recorded. For measurable ink 
particle detachment, we have assumed a 10% ink layer surface 
damage (i.e. the ink detachment may not be total) as the threshold. 
A graph of the work per unit area of the tape versus the pulling 
speed was then plotted. To compensate for the input energy needed 
to deform the tape and the paper, the effective adhesion strength is 
determined from the intercept of y axis at TS = 0 ms-1. Use of 
linear scale of TS was seen effective as compared to logarithmic 
reported by Zhao et al.18 High repeatability was routinely obtained 
using a similar set of measuring and preparing tools. 

Results and Discussion 
I. Importance of Ink Layer thickness control 

To probe the intricate interfacial interactions between an ink 
layer and a paper surface via the surface-sensitive ATR-FTIR 
spectroscopy, we have used a LEP printing process to controllably 
derive continuous thin films of ink particles with desired 
thicknesses of ~ 0.5 and ~ 5 µm. The importance of ink layer 
thickness control can be understood by considering the penetration 
of the evanescent wave in an ATR-FTIR measurement.16 A thin, 
smooth and continuous ink layer is needed for successful and 
unambiguous probing of the ink-paper interface layer by the 
evanescent wave. Trial and error of the printing process and a 
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judicious guess of the refractive index of the black ink used in 
printing here determined the appropriate ink thickness of around 
0.5 µm. With an ink layer thickness higher than this critical 
thickness, one measures solely the bulk ink characteristics (bulk 
ink is denoted as thick ink in subsequent discussion) and does not 
probe the ink-paper interface whereas a thinner ink layer imposes 
practical implementation difficulty due to discontinuity of the 
printed layer. Figures 3A and B show cross-sectional SEM images 
of both ink layers on a paper. We also noted the relative 
smoothness of both ink layers which is conducive towards 
investigating the interfacial physico-chemical interactions via 
ATR-FTIR spectroscopy by facilitating enhanced optical contact 
while suppressing undesirable signal scatterings.  

 
 
 
 
 
 
 
 
 
 
 

Figure 3. Left (A) thin ink, and right (B) thick ink. Scale bar is 2μm. 

II. ATR-FTIR measurement of four papers, thick ink and thin ink 
Figure 4 shows the ATR-FTIR spectra of the four paper 

samples as shown in Table 1 and also that of a thick ink as shown 
in Figure 3B. Major signature peaks are seen from either the paper 
coating or the filler materials: CaCO3 at 1444 (broad), 1796, 874 
and 713cm-1, Kaolin Clay at 1007, 1036, 1111, 913, and its twin 
bands of 3696 and 3621 cm-1.19 The thick ink (~ 4 μm in this 
measurement) shows a characteristic carbonyl (C=O) peak at 1700 
cm-1 and –CH2 stretching bands at 2920 and 2850 cm-1. Of 
particular importance is a narrow region marked with a dashed 
circle as shown in Figure 4B and further explored in Figure 5. 

The importance of controlling ink layer thicknesses towards 
revealing key signature peak which is indicative of A-BI is clearly 
seen in Figure 5A. We observe two distinctive bands for both ink 
layers, one commonly centered at ~ 1169 cm-1 and the other at ~ 
1156 cm-1 and 1152 cm-1 respectively for the thick and thin ink 
layers. To elucidate the origins of these vibrations, we have 
acquired individual FT-IR spectra of the ink particle’s components, 
namely polyethylene, MA and AA copolymers. It is obvious that 
these two bands have no direct associations with polyethylene and 
the paper P4 (i.e. having the highest polar component 
concentration of among the four papers employed in this study). 
By Gaussian-Lorentzian curve fitting of these profiles after 
respective baseline corrections, we assign the bands centred at ~ 
1169 cm-1 to the carbon-carbon stretching vibrations while the 
bands at ~ 1156 cm-1 to the O-C-O bond of the carboxylic group.21 
Unlike in the case of the thick ink layer, a downshift of ~ 4 cm-1 to 
~ 1152 cm-1 is noted for the thin ink layer. In addition, we observe 
a relative increase in intensity of C-O stretching vibration (sv), as 
compared to the nearby C-C sv. While assigning the C-O sv 
intensity as IR2 and that of the C-C sv as IR1, the ratio, IR2/IR1, 
increases from 0.9 (for the thick ink) to 2.5 (for the thin ink). 

Taking into consideration penetration depth of the IR evanescent 
wave, we strongly believe that we have successfully probed the 
ink-substrate interface and that the downshift is likely due to acid-
base interaction of the –COOH with –OH of the underlying paper. 
It is important to note that similar trends were observed for the 
other three papers (Figure 6 A, B and C) even though their –OH or 
–NH concentrations are lower than that of P4. Further evidence of 
such an A-BI is provided by suppression of the dimeric –COOH 
band intensity at around 3100 cm-1 and the slight appearance of 
monomeric –COOH at ~ 3500 cm-1.21 Although it has been 
reported in some cases that a dehydration reaction between -OH 
and -COOH could occur22, we failed to observe such a reaction in 
this work. This is likely due to the relatively short duration (~ 150 
µs) of the nip contact, i.e during the transfer of the heated ink 
particles from the ink transfer medium to the paper at ~ 90˚C. 
Further supporting evidence is given by the band centered at 1700 
cm-1, which coincides with those of MAA, AA and the thick ink 
layer, and suggests presence of carbonyl group of -COOH.  

Figure 4. Left (A), right (B). ATR-FTR spectra of paper and thick ink. 

III. Temporal Evolution of Acid-Base Interaction 
Next, we studied temporal evolution of the transient A-BI 

between a thin ink layer and a paper surface. Immediately upon 
printing the ink layer onto P4, we tracked changes of the signature 
peaks at both 1169 cm-1 and 1152 cm-1. As shown evidently by the 
band position at ~ 1152 cm-1 in Figure 5B, within the first 4 min 
after printing, more than 80% of the A-BI has taken place, as 
compared to that of Figure 5A which was acquired after an hour of 
printing. Interestingly, we observe that ~ 15 min after printing, 
near complete A-BI has occurred. On the other hand, no noticeable 
changes were seen for the bands centered at 1169 cm-1.  

 
 
 
 
 
 
 
 
 
 

Figure 5. Left (A): 1-hour after printing and right (B) as a function of time. 

IV. Macroscopic Adhesion Strength and A-B Interaction 
More importantly, we have consistently observed that the 

transient A-BI behavior manifested itself through macroscopic 
measurement of the adhesion strength, or the ‘practical’ adhesion. 
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It should be pointed out that typical experimentally measured 
adhesion strength values reflect the interfacial adhesion indirectly, 
and are influenced not solely by physico-chemical interfacial 
interactions but also mechanical properties of the paper matrix.11  
We observe that for each profile, the adhesion strength increases 
exponentially to a near-flat plateau in less than 20 minutes. Based 
on the relative strength and kinetics of acid-base and van der 
Waals interactions23 and the transient A-BI behavior as shown in 
Figure 5B, we suggest that at time t = 0 s or soon thereafter 
(measured at regular intervals after printing), A-BI dominates the 
ink-substrate interaction. However, contribution of van der Waals 
interaction to the adhesion strength should not be completely ruled 
out. During the transfer of ink particles onto the paper surface, 
minute amount of isoparaffinic oil (i.e. liquid carrier of the ink 
solution) is likely to be carried over and trapped in between the  
ink-paper interface. As the liquid carrier wicks away from the 
interface, van der Waals interaction is expected to take effect.  
 

 
Figure 6. Tracking of A-BI in P1, P2 and P3. 

Hence, it is reasonable to divide the profiles into two working 
regimes. In regime 1, the adhesion strength increases rapidly and is 
governed mainly by A-BI. In regime 2, van der Waals interaction 
dominates the practical adhesion. A transition should exist between 
regimes 1 and 2, where the incremental dispersion component is 
higher than the incremental A-BI component. The exact duration 
of this transition is expected to be a strong function of the paper 
surface porosity and surface roughness. It is thus logical to assume 
that if the adhesion strength versus time profiles  

 

Figure 7. Macroscopic WA measurement and its correlation with A-BI growth. 

are extrapolated to T = 0 s, the A-BI component of WA could be 
obtained as shown in Figure 7B (i.e the blue-colored profile). The 
almost perfect linear fit is striking and reinforces the supposition 
that short time adhesion is dominated by the A-BI between ink and 
paper. Figure 7B shows the final adhesion strength obtained with 
these four papers versus the A-BI component (the blue-colored 
profile). The difference between the red and blue profiles 
represents the van der Waals component of the adhesion strength.  

Conclusion 
      In conclusion, we show the important role of A-BI towards 
enhancing ink-paper adhesion strength. The LEP printing process 
has been demonstrated to be an ideal approach of laying down 
high-quality continuous smooth thin films of ink particles, and 
could serve as an appropriate test bed for investigation of advance 
material sets for future high speed digital printing. 
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