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Abstract 
New or alternate materials are of interest to formulators 

striving to gain an edge in inkjet printable media whether it is 
in performance or cost.  Much of media development activity 
lies in bridging the gap between copy paper and photo quality 
media.  These mid-range products are required to have a 
competitive edge in performance while maintaining a 
consumer friendly price.  Formulators need a selection of 
materials in order to actualize media products that 
accomplish these objectives. 

This paper examines the performance of precipitated 
silicate, precipitated silica, and calcium carbonate in inkjet 
media.  Following well established guidelines in formulating 
an ink receptive coating, these alternate materials are utilized 
as the primary pigment in a matte formulation.  The resulting 
coating takes advantage of absorptive properties and particle 
sizes to create a porous structure useful in inkjet printing. 

Introduction 
Inkjet media specific paper first came on the scene with 

the objective matching the performance of silver –halide 
photo paper in look and feel.  It was learned early on that 
premium inkjet print quality was achieved when the substrate 
was covered with an ink receptive coating with sizable pores, 
high porosity, and good wetting profiles. [1] Silica gel’s high 
porosity makes it a natural choice.  Achieving a high level of 
porosity led to high color gamut, excellent optical density, 
and reduced bleeding and wicking.  Whether the silica is used 
as a single pigment system or part of a combination, it can be 
stated that gel, fumed, and colloidal silica are the primary 
performance components of inkjet coatings and that silica has 
been very difficult to replace without sacrificing quality.   

Now that many industrialized nations are fully immersed 
in the digital age, a variety of digital technologies are being 
employed in commercial print houses where analog processes 
once reigned.   Thus, new applications for inkjet printing have 
risen in high speed web printing.   This has also created a 
need for media that can handle the particular aspects of high 
speed, inkjet printing.   

Conventional printing paper is designed to provide 
optimum printing with analog inks that contain significantly 
lower levels of ink vehicle.  These types of papers do not have 
the capacity or porosity to achieve the quick dry times to set 
inkjet inks.  The additional dry time becomes critical on the 
high speed presses as the ink dry times then determine the 
speed of the printer.  The challenge is to balance the ink dry 
times with print properties of color gamut, optical density, 
bleeding and strike through. [2] All while keeping media costs 
suitable for the application.     

High-speed web inkjet printing has opened the door to 
alternative materials and pigment manufacturers have spent a 
great amount of time developing products that may be 
suitable for the application by modifying and engineering new 
versions of traditional pigments.  Modified, engineered, and 
precipitated structures have high surface area and internal 
pore volume.  Utilization of these types of materials in a 
coating should create a porous structure that traditional 
pigments, like clay, were unable to achieve.  Knowing what 
was learned from photo-quality media, the porous coating 
structure is crucial for achieving the fast dry times and good 
print quality.    

Experimental 
The silicates and silica selected for this study were 

chosen because their precipitated structures have high surface 
area and demonstrate an ability to absorb liquids while having 
the potential to be economically suitable for commodity 
papers.  The properties of the silicates and silica are 
summarized in Table 1.  Silicate A is a precipitated sodium 
aluminum silicate.  Silicate B is a precipitated calcium 
silicate.  Silicate C is a precipitated magnesium silicate. Silica 
D is modified precipitated silica.  ECC is a calcium carbonate.   

Table 1. Properties of Trial Materials  

Material 

Surface 
Area 

(m2/g) 
pH 

(5%) 

Oil 
Absorption 
(g/100g) 

Particle 
Size 

(microns) 
 

Silicate A 
 

100 10.7 185 9 

 
Silicate B 

 
60 10.5 175 7.5 

 
Silicate C 

 
50 10 60 5.7 

 
Silica D 

 
165 6 230 18 

 
ECC 70 9 105 2.4 

   

The starting point of this experiment utilized a standard 
inkjet formulation containing polyvinyl alcohol (PVOH), 
polyvinylpyrollidone (PVP), and cationic mordant.  Polyvinyl 
alcohol is frequently chosen as the binder for inkjet coatings 
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because the pigments employed for optimum print quality are 
high surface area materials with significant binder demand.  
Exercising a strong binder like PVOH allows the formulator 
to lessen the binder content allowing for maximum pigment 
effect. [2] The PVOH employed throughout this experiment 
was Poval PVA-235 manufactured by Kuraray.  It is a super 
high molecular weight, partially hydrolyzed PVOH.  Data 
advocates super-high molecular weight PVOHs, such as PVA 
235, to produce coatings with minimal cracking. [4] PVP 
controls ink spreading, bleeding and holds it at the surface.  
[5] Finally, the ink is fixed and immobilized to the media 
through the use of a cationic mordant.   The addition of a 
polymeric amine results in improved print properties such as, 
gamut, optical density and permanence. [6]  

Although binders are considered the glue of the 
formulation, they must be considered carefully because they 
impact the resulting surface chemistry and porous structure.  
This is especially true for PVOH with its hydrophilic nature 
which assists in absorption of water based inks leading to 
reduced wicking and bleeding.  Although both fully 
hydrolyzed and partially hydrolyzed PVOHs are used in inkjet 
formulations, partially hydrolyzed PVOH gives better optical 
density and dry times when used with silica pigment. [2] The 
binder’s impact doesn’t end there.  Low molecular weight 
PVOH can be absorbed into the pores and reduce the 
efficiency of the ink absorption thus affecting print quality. 
[7] Lastly, PVOH affects the coating structure and influences 
the overall average pore size. [6]  

Many researchers have demonstrated that alternate 
materials require only a portion of the PVOH utilized in 
traditional porous coatings encompassing silica. [8, 9, 10]  
Therefore, it was surmised that each material should be 
formulated at three binder levels to discover the optimum 
level for each material for coating strength and performance.  
Three formulations were prepared with pigment binder ratios 
of 100:10, 100:30, and 100:50.  The pigment PVP ratio was 
kept constant at 100:30 and the cationic addition remained 
constant throughout the experiment at 1.44 %.  The final 
solids content was kept constant at 14.45 %. 

The formulations were coated onto Syntheape paper, a 
non-porous synthetic paper, using an automatic coater fitted 
with a 100 μm KBar to ensure an even coating with a target 
coat weight of 9 gsm was produced.  The paper was dried in 
an oven at 110°C for 20 minutes. 

The experimental coated Syntheape papers were printed 
on a Hewlett Packard Officejet Pro K5400 and Epson Stylus 
Photo R300 with an ImageExpert test pattern.  A 
commercially available Hewlett Packard sheet of 175 gsm 
was also printed as a reference.  Each print was assessed for a 
range of inkjet print criteria. X-Rite 938 Spectrodensimeter 
measured the color gamut and optical density.  Optical density 
was calculated from the sum of measured C, M, Y, and K 
optical densities. Gamut was calculated from the sum of the 
absolute value of CIE a* and b* parameters for C, M, Y, B, R, 
and G colors.  For optical density and gamut, a higher number 
represents a better value.  Other print properties were assessed 
using Imagexpert analysis software.  The properties were 

measured on a scale of 1 – 6 with lower numbers representing 
better print quality.   

Results and Discussion 

Coating Characteristics 
It was observed, with the exception of Silicate A, that the 

experimental formulations have a few undesirable 
characteristics.  Silicate B appeared to be incompatible with 
the inkjet formulation resulting in a poor dispersion and solids 
separation.  The resulting coated sheets had poor patchy 
coverage.  This material was deemed unsuitable for this 
experiment and eliminated from further evaluation.  Silica D 
and ECC had a hard settlement requiring vigorous remixing 
prior to coating the Syntheape.  Silicate C produced a soft 
settlement which required only slight remixing to prepare for 
draw downs.  Silicate A produced limited settlement and did 
not require any additional mixing. 

Table 2. Formulation Viscosity 

Formulation 
Viscosity (cps) 

10rpm 20rpm 50rpm 100rpm

A @ 100:10 0 20 28 40 
A @100:30 380 350 260 212 
A @ 100:50 240 350 336 288 
C @ 100:10 0 10 24 36 
C @ 100:30 620 440 260 206 
C @ 100:50 1040 770 522 408 
D @ 100:10 
D @ 100:30 
D @ 100:50 

0 
100 
320 

10 
130 
330 

28 
136 
332 

46 
140 
320 

ECC 100:10 0 0 12 24 
ECC 100:30 640 620 480 342 
ECC 100:50 240 250 244 238 

 
The viscosity of the remaining formulations is presented 

on table 2.  The lowest binder level of 100:10 presented some 
challenges in obtaining an even coating on the Syntheape due 
to the very low viscosity.   This would indicate that the total 
solids content could be increased for silicate and calcium 
carbonate formulations at low binder levels.  This would be 
advantageous for improved runnability on a coater and 
increased coat weights applied to the substrate.  The other 
binder levels developed adequate viscosity for coatings.  

 Pigment to Binder Ratio  
The next step was to determine which binder level 

worked synergistically with the materials to produce optimum 
print quality.  The color gamut and optical density for the 
papers printed on the HP K5400 can be found in Figures 1 
and 3.  The color gamut and optical density for the papers 
printed with the Epson R300 can be found in Figures 2 and 4.   
The data indicates that each experimental material responds 
differently to the level of PVOH.  Silicate A performed 
consistently on both printers with an optimum level of PVOH 
at 30 parts.   Silica D  with  30 parts of PVOH was determined  
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Figure 1. Color gamut on Officejet K5400 

Figure 2. Color gamut on Photo Stylus R300 

to be the optimum level because it gave the best optical 
density on both printers and the best color gamut on K5400.   
Silicate C achieved its best results in optical density with 10 
parts of binder on both printers.  Lastly, the ECC performed 
best at a level of 50 parts of binder on both printers.  This was 
an unexpected result as most experiments with calcium 
carbonate formulate 10 parts or less of PVOH. [8, 9, 10] 

Print Quality 
An ink receptive coating that can deliver truly good print 

quality must excel in all of the print attributes.  A print with 
perfect  line  roughness  and  no color   to color  bleed  will be  

Figure 3. Optical Density on Officejet K5400  

Figure 4. Optical Density on Photo Stylus R300 

viewed as insufficient if the optical density is poor.  The 
opposite holds true as well.  Preventing the penetration of ink 
into the coating results in higher optical densities but unless 
the ink is immobilized quickly, the resulting print will be 
blurry as well as bright.  Therefore, there is no one attribute 
which is more important than the other. 

This fact is especially apparent in the ECC evaluation.  
The bleed and line roughness results on the ECC is only 
marginally worse than the other materials.  Subjective visual 
evaluation of the sheets also indicates that the print quality of 
the ECC is comparable to the other materials except in optical 
density and color gamut.  Figure 5 demonstrates the visual 
effect of poor optical density and color gamut achieved by the  
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Figure 5. Black and magenta blocks printed by Officejet K5400. 

ECC.  The gamut and optical density results shown Figures 1 
– 4  indicates  that  the calcium carbonate utilized in this study 
produced much lower optical densities and gamut than the 
other materials.  Calcium carbonate formulations with low 
contact angles result in a high absorption rate that leads to low 
optical densities because the ink is absorbed before the 
colorant can be fixed at the surface. [10] It is likely that the 
absorption of the colorant into the porous coating leads to a 
reduced color gamut as well.   

Silica D performs well on both printers in the areas of 
line width and line roughness but is similar to ECC in that its 
optical density and color gamut are poor.  The color gamut is 
shown in Figure 6.  The oil absorption for Silica D is 230 
g/100 g.   This is  the  highest  oil  absorption of  experimental  

Figure 6. Color gamut prints by Officejet K5400. 

materials as shown in table 1.  It is surmised that the optical 
density and color gamut suffered because the ink was able to 
penetrate beyond the surface of the coating due to the high 
absorption property of Silica D. 
It has been the goal in the inkjet market to produce a universal 
sheet to work with all printer inks.   This is a challenging task, 
as is demonstrated in the print analysis shown in Figures 7 
and 8.  The Silicate A performs the best on the HP K5400 
printer and the worst on the Epson R300 printer in print 
analysis.  The print quality of the ECC printed with the 
K5400, which is the worst,  is equal to the best result on the 
R300 achieved using Silica D.   In  the  case of Silicate A, the 
100:10 ratio had better bleed and line roughness than the 
100:30 ratio.  This is demonstrated in Figure 9. So, although 
both  printers  use  dye  based  inks,  their  chemistries interact  
 

 

Figure 7. Print analysis of prints from the Officejet K5400 

 
Figure 8. Print analysis of prints from the Photo Stylus R300 

differently with each of these materials.  Further optimization 
is needed of the other components of the formulation to create 
an acceptable universal coating. 

Conclusion 
Four of the five materials evaluated showed an ability to 

create an ink receptive coating that works with dye based 
inkjet printers.  Although none of the materials performed 
consistently throughout the evaluation, Silicate A had the best 
overall performance.   ECC and Silica D had poor optical 
density and color gamut and would need further examination 
to determine if those properties could be improved by 
adjusting the fixative. 
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Figure 9. Line width and bleed from papers printed on Photo Stylus 
R300. 
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