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Abstract

The quality of inkjet printed color is significantly influ-
enced by the substrate coating structure, which strongly affects
ink-setting performance. Small amounts of coating additives are
necessary and play an essential function, which in turn affects
the substrates final surface structure, optical properties and
printed color. The main objective of this study was to evaluate
the performance of various polyolefin dispersions in paper coat-
ings for inkjet papers and their effects on paper properties, in-
kjet printability and color. The polyolefin dispersions were add-
ed to a typical silica based coating formulation, and then com-
pared to a control coating without a polyolefin additive. The
coatings were applied to base sheets by a cylindrical laboratory
coater. Coated papers were then calendered. To ascertain the
mechanism underlying the effects of tested additives coating
rheology, surface properties, optical properties, and print quali-
ty were measured. Based on the results, these additives provide
increased paper brightness due to enhanced OBA efficiency,
better lightfastness, and the potential for improved coating ap-
plication.

Introduction

Among digital printing technologies, inkjet offers a high
quality of color reproduction, resolution, and speed. This makes
inkjet a leading digital printing method to challenge convention-
al printing for photo reproduction and high quality graphics.
Generally, inkjet inks are aqueous, dye or pigment based, which
are composed of 65-90% water [1]. Due to the drying mechan-
ism, it is critical that an inkjet substrate absorbs ink instantly.
Consequentially, substrate quality significantly influences inkjet
printing quality. For inkjet paper, the coating structure and quali-
ty determine commercial inkjet paper grades and functions [2].
Many efforts have been made by manufacturers and researchers
to approach high print performance; such as wide color gamut,
optical density, sharpness or resolution, and archival properties.

During this experiment, four anionic and one nonionic po-
lyolefin dispersions from Baker Hughes were tested. To pre-
screen these additives, drawdown coating tests were performed
prior to application by a cylindrical laboratory coater (CLC).
Due to the significant impact on coating rheology, the nonionic
additive was removed after the prescreening. This paper reviews
test results from the four anionic additives.

Methodology

Amorphous silica based coating formulations are widely
applied on premium inkjet papers, due to their highly absorbent
nature and brightness characteristics [3]. For this study, a typical
silica based inkjet coating formulation was applied with and
without polyolefin additives. The coating formulation is given in
Table 1. Silica dispersion was Pyrogenic (Fumed) Amorphous

Silica from Cabot (CAB-O-SPERSE PG 001, particle size: 188
nm, pH: 9.9-10.9). Polyvinyl alcohol (PVOH) was partially
hydrolyzed from Celanese (Celvol 203 S). To maintain disper-
sion stability, PVOH pH value was modified with NH,OH to be
close to that of silica [4]. Starch was modified hydrophobic sur-
face starch (Filmkote 54, National Starch). Optical brightening
agent (OBA) was cationic, Leucophor FTS from Clariant. Addi-
tives tested included polyolefin dispersions A, B, C, and D (see
Table 2). A control without additive was also tested. These
names were also used to designate the coated paper samples. A
total of five coating formulations were prepared. The final coat-
ing solid content was 26.5%-27.5%.

The base sheet used in the coating experiments was a sized
paper. The physical properties measured for the base sheet were:
basis weight of 62 g/m”, Parker Print Surf roughness of 4.05 pm
(1000 Pa, soft backing), TAPPI brightness of 86.8%, and paper
gloss (at 75°, MD) of 14.3%.

Table 1: Typical Commercial Coating Formulations

Coating Control A B C D
Ingredients Dry Parts Added

Silica 100 100 100 100 100
PVOH 10 10 10 10 10
Starch 10 10 10 10 10
OBA 4 4 4 4 4

A 4

B 4

C 4

D 4

Table 2: Four Anionic Polyolefin Dispersions

Viscosity Solids

Chemistry (cps) (%)
A | Functional Polyethylene 10.0-15.0 22-25
B | Functional Polymer 10.0-20.0 18-20
C | Functional Polyalphaolefin 400.00 25-30
D | Functional Polymer 20-30 18-20

To identify the influence of tested additives on coatings, an
AR 2000 Dynamic Stress Rheometer (TA Instruments) was used
to study rheological properties at low shear rates. In addition, a
Hercules Rheometer was used to determine rheological behavior
at high shear rates (E Bob, 6600 max RPM and Spring Set at
200 kilo dynes-cm, 20.4 Sec).

The coatings were applied by a blade type, cylindrical la-
boratory coater (CLC) at 3000 ft (762 m) per minute. The target
coating weight was 14 g/m?. All the samples were calendered
with the soft-hot nip calender through 2 nips, at 500 pli (1000
psi on gauge) and 71.1°C (160°F).

Paper roughness was measured by PPS ME-90 (1000 Pa,
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soft backing) based on TAPPI T555-OM-99. Air permeability,
from PPS porosity was also measured under the same conditions.
Brightness of coated samples was measured with a BrightiMeter
Micro S-5 based on TAPPI Standard T452-OM-98 (457 nm
light). Paper gloss was measured at 75° using a Novo-Gloss™
Glossmeter based on TAPPI standard T480-OM-99, in both
machine direction and cross-machine direction. CIE L*a*b*
value of paper samples were measured by X-Rite EyeOne 10
SpectroDensitometer. To study the water absorption on coated
papers, an ultrasonic water penetration test was performed using
an EMCO DPM30. Dynamic contact angle tests, which were
related to paper surface energy, were also performed by using
FTA 200; and water drops spreading (simulating aqueous ink
spreading) were observed too.

Samples were printed with an Epson Stylus Photo 2200
printer using an Ultrachrome 4-picoliter pigment ink. ORIS
Color Tuner 5.5.1, one printer RIP software from CGS Publish-
ing, was applied to achieve accurate CMYK tint color [5]. 100%
and 20% CMYK tints were printed on each sample. Optical
density was measured with an X-Rite 530 SpectroDensitometer
on the 100% tint. Print gloss was measured on the 100% magen-
ta tint using a Novo-Gloss™ Glossmeter (at 75°). A TC3.5
CMYK test chart was printed on each sample (at 720 dpi) to
determine each samples color reproduction performance. These
charts were measured with an X-Rite EyeOne 10 Spectrophoto-
meter. ICC profiles were then generated using Profile Maker
5.08 software. The color gamut volumes achieved from the
coated papers were derived from CHROMiX ColorThink 3.0
Pro software. All samples were then exposed to over 48 hours to
a xenon exposure system, Suntest CPS+, Atlas (@ 765 W/m?) to
determine fade resistance. The intensity of light exposure used is
equal to 4.5 months of daylight (June) in Florida [6, 7]. The
charts were then measured again to calculate their color gamut
volumes [8].

An Epson premium photo glossy paper was selected as a
reference for some tests. It is a typical resin coated photograph-
ic paper of five layer construction. The paper base weight was
250 g/m? and caliper was 10 mils.

Results and Discussion

Brightness and CIE L*a*b*

The largest observed benefit of the polyolefin additives
were higher brightness and improved L*a*b*. Paper brightness
is related to print contrast and color reproduction, and is one of
the key factors for print appeal. Fluorescence optical brightening
agents (OBAs) are widely used in inkjet paper. OBAs increase
brightness by absorbing light in the UV spectrum (340-370 nm)
and re-emitting blue white visible light (420-470 nm) [9]. As
shown in Figure 1, all of the tested polyolefin additives signifi-
cantly increased the brightness of the paper samples. Additive D
increased it the most.

In addition, samples containing polyolefin additives
showed significantly lower b* values compared to the control.
The lower b* values relate to a bluer undertone that contributes
to perceived brightness. Additive B and D have the lowest value,
as shown in Table 3. The precise mechanism is not yet clear.
One potential mechanism is that these additives might carry or

fix the OBA near the coating surface. Another could be that
these additives enhance the cationic brightener efficiency. From
their performance, it could be interpreted that these polyolefin
additives function as efficient OBA carriers [9].

Brightness
93
92.5
92 T
91.5
91
E I I I E
90 +— —
89.5 j
89 +—
88.5 -
Control A B C D
Figure 1: Paper Brightness
Table 3: CIE L*a*b*
Control A B C D
L* 95.92 96.08 96.08 95.98 96.09
+.08 +.07 +.08 +.08 +.04
a* -.30 -.09 12 -.31 .08
+.08 + .06 + .11 + .06 +.04
b* -1.24 -2.59 -2.95 -1.64 -3.02
+ .28 +.21 +.33 +.18 +.20
Lightfastness

Initially marketed inkjet photo paper had a poor lightfast-
ness, or fade resistance. As the uses of digital cameras have
grown, consumers want the digital output, from generally inkjet
printers, to last as long as possible [10]. Many other documents
also require the print to have better archival ability. According to
Epson Corporation, a photo paper typically has a polymer layer
that protects against fading caused by light and air pollution [11].
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In the lightfastness test performed in this experiment, po-
lyolefin additives showed slightly lower color gamut loss when
compared with the control, except for sample B. Furthermore,

the performance is all very comparable to Epson photo paper.
Compared to the commercially manufactured photo paper, with
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Figure 2: Lightfastness
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a protective layer and well-controlled quality, the effects of the
three tested polyolefin additives were definitely positive. This
further confirms the hypothesis based on the brightness test
results: these additives function as efficient OBA carriers [9].
The results are shown in Figure 2.

Color Gamut & Optical Density

Except for color fidelity and optical density, print quality
can be evaluated by the color gamut volumes [8]. A wider color
gamut volume results in better color reproduction [6-8]. From
Figure 3, tested samples showed color gamut volumes similar to
those of the control, except for sample A, which is slightly lower.
Additionally, all samples with polyolefin additives have better
color reproduction in highlight areas (see Fig.4 top left region)
and blue regions in 3D color space, compared to the control. The
difference between sample A (lowest color gamut volume) and
sample D (lowest b* value) with the control are shown in Figure
4. The lower color gamut volumes of the Epson paper is due to
the higher absorbance of ink. In the optical density test, there
were no significant differences in optical density between the
control and the samples with additives. However, they also had
better values than the commercial Epson ink jet paper. For in-
stance, 100% black tint density on sample D (2.07) is 25% high-
er than the value on Epson (1.49).

Color Gamut Volume
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Figure 3: Color Gamut Volumes
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Rheology

Rheology significantly affects coating performance and
process run ability [12]. Table 4 lists the coating rheology prop-
erties, which were derived from the rheological measurements.
Three measurements, Oscillation Stress Sweep, Oscillation Fre-

quency Sweep and Steady State Flow were performed; all are
commonly used to analyze coating viscoelasticity and flow
properties. Onset Point is a critical point where the elastic mod-
ulus (G') starts to decrease and the coating dispersion starts to
flow.

Table 4: Coating Rheology Properties

Control A B C D
Onset Point: Pa 24 29 3.2 3.7 22
G': Pa 169 162 340 187 108
Z.R\V *: KPa's 11.2 19 418 297 43
I.LR.V**: Pa-s .09 .08 .08 .08 .05

* Zero-Rate Viscosity; ** Infinite-Rate Viscosity

Figure 5 shows coating viscosity versus shear rate. Separate
testing was done at both low and high shear rates and fitted onto
one chart. Compared to the control, three of the additives
slightly increased the coating viscosity at low shear rates. Addi-
tive D presented the lowest viscosity in the low shear rate range,
which could allow an increase in coating solids content. Due to
economic considerations, manufacturers prefer to apply coatings
at the highest solids possible [13].

In addition, the control presented a slight dilatant behavior
in the high shear range. This could contribute to poor run ability,
especially using blade type coaters [14]. This dilatant behavior
was not observed for the tested polyolefin additives.
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Figure 5: Coating high and low shear rate vs. viscosity (Cross model)

Roughness, PPS Porosity & Water Penetration

Although there is not a uniform interpretation for the ultra-
sonic water penetration test, some previous research has shown a
correlation of these values to paper roughness, air permeability
and wetting time [15]. In Table 5, two important parameters are
shown. tg is the time with maximum transmission, which is the
elapsed wetting time; tg is the time with most negative gradient,
which refers to peak absorbency time.

Table 5: Ultrasonic Water Penetration & Paper Surface

Sample Con* A B C D E*
tg: ms 308 307 107 323 87 37
ts: s 3.6 4.6 54 7.3 6.3 0.28
R** microns | 1.17 123 111 117 125 2.08
P*** ml/min | 249 231 235 234 231 161
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* Con: Control, E: Epson; ** Roughness, error < 5%, *** PPS Porosity,
error < £10%.
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Samples B and D had moderately shorter initial wetting
times. It was observed that all of the tested additives required
more time to reach their peak absorbent time, compared with the
control. From the long period absorption curves in Figure 6, all
of the additives prolonged the water penetration time (or satu-
rated time); with Additive C doing so the most. However, both

paper roughness and air porosity were similar for all the samples.

Therefore, these additives increase the samples hydrophobic
properties, rather than decrease the air permeability. The net
effect is that the additives reduce the ink penetration rate into the
base paper.

e
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Figure 6: Ultrasonic Water Penetration in 20 seconds, Y axis is energy
transmission rate (r %)

Photo Paper Coating Construction
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Figure 7: Typical Photo Paper Polyethylene Coating Construction

Premium inkjet paper, such as Epson photo paper, normally
adopts two imaging layers to provide sufficient ink capacity. The
first imaging layer is set to fix ink droplets in place; the second
layer absorbs additional ink (Figure 7). It also has two extruded
polyethylene layers to eliminate ink penetration into the core
paper layer and maintain dimensional stability; which also im-
proves smoothness, gloss and anti-curling (back layer) proper-
ties [11, 16]. Hypothetically, choosing suitable additives for the
second imaging layer might eliminate the need for the top polye-
thylene layer. If so, inline coating would become possible. How-
ever, this is beyond the scope of this paper.

Contact Angle

Figure 8 shows the change of water contact angle on the
paper samples in 10 seconds. The angle change represents water
spreading. The initial contact angles of the samples with addi-
tives are comparable to the control. The Epson paper has a
higher initial contact angle because it has a low surface energy
protective polymer layer. During the 10-second test, the contact
angle of samples A, C and D showed a slower decline than the

control, which indicates less ink spreading or ink immobilization.
This could provide improved image resolution and sharpness,
providing further support that polyolefin additives enhance the
performance of the first imaging layer of the photo paper.

Contact Angle
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Figure 8: Surface Contact Angle

The change of droplet volume was also recorded and it is
shown in Figure 9. These data were normalized to their initial
readings. Combining this data with the above contact angle re-
sults indicate that samples A, C and D have less ink spreading
than the control. Compared to Epson paper, the contact angle of
samples C and D declined slower, while the remaining drop
volumes dropped faster than the Epson paper. This indicated that
the ink droplet would be well fixed on the spot with less spread-
ing.
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Figure 9: Water Droplets Remaining Volumes on Samples

Conclusion

Overall, the four anionic polyolefin additives provided im-
proved performance of the paper coatings. Additive D provided
the best total performance with positives related to optical prop-
erties, print properties and run ability. Additives A, B, and C
provided a mixture of positive and neutral test results.

All of the additives significantly increased paper brightness.
We theorize that this is related to improved OBA efficiency.
Additive D provided good lightfastness. It also provided the
ability to control ink spreading, which would improve the image
resolution. While all additives eliminated the dilatant behavior
observed with the blank control coating, Additive D also re-
duced the viscosity at low shear rates, which might enable an
increase of coating solids content.
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