
 

Further Studies on Reciprocity Effects for Accelerated Ozone 
Tests Compared to Ambient Air Exposure 
Matthew Comstock, Ann McCarthy; Lexmark International, Inc.; Lexington, Kentucky, USA 

Abstract 
The digital print industry is working toward the goal of 

adopting improved test methods for image permanence.  This study 
focused on the impact of ozone concentration on the performance 
of inkjet print samples.  Results from accelerated tests were 
compared to data collected from identical sample sets exposed to 
ambient air and to filtered air.  Reciprocity failure was observed 
for some samples in the test, but the results also verified earlier 
work in which ambient air exposure can be generally linked to 
accelerated ozone test results.  This research is part of ongoing 
work contributing to the development of standardized test methods 
for image permanence. 

 

Introduction 
About 5 years ago there was widespread investigation into 

predicting sample fade behavior due to ambient air.  Thornberry 
and Looman made a strong case that ozone was the principal cause 
of inkjet sample fade in ambient air [1].  They also demonstrated a 
relationship between accelerated ozone testing and ambient air 
fade; however, in the second part of their experiment actual 
ambient ozone was approximated rather than measured directly 
and they acknowledged major sources of error including difference 
in the accelerated test environment compared to the ambient air—
notably a much higher temperature. 

Other papers attempted to correlate accelerated ozone testing 
to ambient air exposure, some showing reciprocity failures while 
others did not [2,3,4,5].  The presence of reciprocity failure, a 
difference between accelerated and ambient test results at 
equivalent exposures, appears to be a function of the samples 
tested, as some samples are not subject to reciprocity failure while 
others are. 

The purpose of the research detailed in this paper was to 
apply recent learning involving dry time [6] and test temperature 
and test humidity [7] to minimize influence of variables that may 
affect conclusions derived from experimentation on the impact of 
ozone test concentration on sample fade rates and in comparing 
those results with ambient air exposure. 

 

Experiment 
The following equipment was used in the testing: 

• Teledyne 400E UV Absorption O3 Analyzer 
• Kahn Optidew Bench chilled mirror hygrometer 
• SATRA/Hampden Model 903 ozone chamber 
• Gretag Spectrolino/Spectroscan 

A test cabinet similar to that described in [1] was also used.  
The cabinet was approximately 6 feet high with 4 inch openings 
on both sides near the floor containing fans pulling air into the 
cabinet that was then vented at the top.  The vents were 

constructed as to minimize light exposure inside the cabinet.  
Specially designed wire shelving was used within the cabinet to 
minimize obstruction to airflow.  Samples were hung by clips from 
the wire shelving.  One cabinet was kept in the lab, where air was 
filtered for ozone, to be used as the control case.  An identical 
cabinet was placed outside the lab, thereby allowing its samples to 
be exposed to ambient ozone. 

All samples were printed at the same time to minimize 
variation due to printer setup or ink cartridges.  The samples began 
testing within a few days of each other to minimize the effect of 
dry time (just over 2 weeks). 

Accelerated ozone testing was done in the Hampden 903 
chamber using a sample carousel that rotated samples within the 
chamber.  The two test levels chosen were 0.5 PPM and 5 PPM 
ozone.  The 0.5 PPM test started first and then was alternated with 
the 5 PPM test; however, the 5 PPM test finished much earlier as 
both targeted the same cumulative exposure levels: 10, 25, 100, 
and 250 PPM-hours.  The accelerated tests were run at 
23C/50%RH (+/-0.5C, +/-2%RH). 

The ambient air test conducted outside the lab was within a 
large building best characterized as light manufacturing or 
warehouse storage.  The ambient ozone was measured at 15 
minute intervals throughout the test beginning in June and ending 
in September.  Actual ozone levels varied from 0 to 28 ppb, 
generally following the amount of sunlight as shown in Figure 1.  
The average ozone level during the test was 10.75 ppb. 
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Figure 1.  Ozone Measurements Collected During Ambient Ozone Test (in 
ppb).  Four Week Window Shown is Representative of Entire Three Month 
Test. 

The ambient temperature and relative humidity were also 
measured.  The average temperature was 21C oscillating daily 
between 20-22C (min 19C, max 24C) and average humidity was 
52% oscillating daily between 49-56% (min 44%, max 61%). 

The lab temperature and humidity were kept at 23C/50%RH 
and varied by +/-1C and +/-3%RH.  Although the ozone monitor is 
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accurate to 1 ppb ozone, the air within the lab is scrubbed by eight 
50 pound activated charcoal filters and the ozone monitor was not 
able to get an accurate reading (usually oscillating about zero).  
The ozone level in the lab was estimated to be about 0.3 ppb by 
comparing sample fade rates in the lab with the other test data. 

Eight inks and seven media were selected for this study, for a 
total of 12 unique ink and media combinations.  The inks included 
both dye and pigment, designated by letters.  Media included both 
porous and coated matte papers, designated by numbers.  Samples 
included density ramps of cyan, magenta, yellow, red, green, blue, 
and neutral color patches.  From an initial density between 0.5 OD 
to 1.5 OD a patch was selected for each color that showed the 
greatest density change.  In the comparative analysis, the same 
color patch was selected for all samples of a system across the 
various test conditions; so if the third cyan patch was selected on 
one sample at one ozone concentration, the same third patch on a 
matching sample was used for comparison at another ozone 
concentration.  Measurement data shown is also an average from 
two sample replicates. 

 

Results and Discussion 
A large amount of data was collected in the experiment which 

necessitates the use of generalizations; however, where possible 
specific examples will be used. 

The first general observation was that the paper white change 
was inconsistent between test conditions for many of the media.  
Some media yellowed as a function of test time while others 
yellowed according to ozone exposure.  The net consequence is 
that because the density measurements do not correct for this 
change there is added noise in the measurements, particularly of 
light yellow ink patches. 

The second general observation is that the ambient ozone test 
samples often faded slightly less than expected based on trends 
between the accelerated and lab control tests.  One theory is that 
the slightly higher humidity in the ambient test resulted in more 
ink migration, thus increasing the patch density and making it 
measure as though it had not faded as much. 

Table 1 shows data of System A1 comparing three tests at 
equivalent cumulative ozone exposure of 1 PPM-hours.  This table 
demonstrates how the control ozone level was determined by 
matching fade rates.  The outlier in this data set is the ambient 
yellow measurement, probably affected by humidity.  This 
includes the yellow component (blue density) of the neutral, red, 
and green patches. 

Table 2 shows System E3 using the same assumed lab 
ambient control ozone level as in Table 1.  The outlier in this 
system is ambient magenta, also likely caused by humidity 
induced ink migration.  This includes the magenta component 
(green density) of the neutral, red, and blue patches.  The slight 
increase in yellow density loss at 0.5 PPM is due to less paper 
yellowing compared to the other test conditions (paper yellowing 
counteracts yellow ink fade in the measurements). 

Table 3 compares fading of cyan patches in the accelerated 
ozone tests at 5 PPM and 0.5 PPM with the ambient ozone test all 
at the same cumulative ozone exposure of 25 PPM-hours.  Media 2 
and 4 shaded in gray were matte coated paper while all the others 
were porous photo papers.  Ink B was a pigment ink while all the 
others were dye.  Pigment inks such as the one in this test are not 

affected by humidity migration and it is interesting to note that it 
experienced the greatest deviation in fade rate between the 
accelerated and ambient ozone tests.  System B1 showed a strong 
reciprocity failure between the 5 PPM and 0.5 PPM ozone test 
concentrations, which was consistent throughout the test.  At a 
cumulative ozone exposure of 250 PPM-hours the cyan patches 
had faded 5.7% at 5 PPM and 10.7% at 0.5 PPM.  However, the 
same ink on the coated media showed similar fade rates at 5 PPM 
and 0.5 PPM (i.e. no reciprocity failure). 

 

Table 1.  System A1 Density Change at 1 PPM-hours Cumulative 
Ozone Exposure. 

Patch Control Ambient 0.5 PPM 
Neutral -9.0% -8.7% -10.0% 
Neutral -3.0% -3.3% -4.6% 
Neutral -3.2% -0.3% -1.8% 
Cyan -8.1% -8.1% -8.5% 

Magenta -2.5% -2.6% -4.0% 
Yellow -2.1% 0.7% -3.2% 

Red -2.7% -2.7% -3.9% 
Red -3.8% -0.9% -3.6% 

Green -9.0% -8.3% -9.9% 
Green -1.9% 0.2% -2.3% 
Blue -8.8% -8.5% -8.6% 
Blue -3.6% -3.5% -4.5% 

 

Table 2.  System E3 Density Change at 1 PPM-hours Cumulative 
Ozone Exposure. 

Patch Control Ambient 0.5 PPM 
Neutral -8.1% -7.2% -8.3% 
Neutral -6.2% -4.6% -6.6% 
Neutral -1.8% -1.4% -3.1% 
Cyan -4.2% -4.2% -5.3% 

Magenta -5.4% -3.6% -5.0% 
Yellow -0.4% -0.2% -1.2% 

Red -5.0% -4.3% -5.7% 
Red -1.4% -0.9% -2.7% 

Green -8.4% -7.9% -9.4% 
Green -0.2% -0.3% -1.5% 
Blue -5.9% -6.5% -8.0% 
Blue -5.6% -4.2% -6.3% 
 
 
Most ink media combinations in this test showed slightly 

more fade at 0.5 PPM than 5 PPM, while as mentioned earlier, 
ambient fading was usually less than this trend would have 
suggested.  Yet when the data from all these systems are viewed as 
a whole it is remarkable how similar the ambient air fading is to 
the accelerated ozone testing at a common ozone exposure. 
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Table 3.  Cyan Patch Density Change at 25 PPM-hours 
Cumulative Ozone Exposure. 

System 5 PPM 0.5 PPM Ambient 
A1 -36.5% -43.0% -46.7% 
A2 -14.2% -15.6% -14.8% 
B1 -2.4% -4.2% -6.7% 
B2 -2.5% -2.9% -6.2% 
C3 -15.0% -19.2% -16.4% 
C4 -8.1% -9.0% -8.3% 
D3 -25.0% -31.4% -24.8% 
E3 -30.5% -35.4% -27.1% 
E4 -8.8% -9.9% -8.3% 
F5 -9.9% -11.6% -10.4% 
G6 -1.4% -1.6% -1.3% 
H7 -9.1% -10.9% -10.4% 

 
 
Table 4 shows results of the same test conditions for the 

magenta patches.  Once again the 0.5 PPM test condition showed 
slightly more change than at 5 PPM.  Magenta dye inks A, C, D, 
and E are known to be sensitive to humidity migration and all 
showed much less fading at the ambient test condition. 

 

Table 4.  Magenta Patch Density Change at 25 PPM-hours 
Cumulative Ozone Exposure. 

System 5 PPM 0.5 PPM Ambient 
A1 -38.2% -42.8% -33.6% 
A2 -22.2% -25.7% -18.8% 
B1 -1.2% -1.3% -1.3% 
B2 -1.5% -1.4% -1.7% 
C3 -22.7% -26.8% -20.2% 
C4 -19.2% -21.0% -18.2% 
D3 -39.1% -42.8% -32.0% 
E3 -53.0% -54.2% -39.7% 
E4 -35.3% -39.4% -33.1% 
F5 -3.3% -4.0% -2.1% 
G6 -1.4% -1.8% -1.9% 
H7 -8.5% -9.5% -9.5% 

 
Table 5 shows density change of the yellow patches.  The 0.5 

PPM test again resulted in slightly more fading than at 5 PPM for 
most systems.  Moreover, ambient fading continues to be less than 
expected.  Ink migration remains the prime suspect, supported by 
the evidence of Ink A yellow which showed almost no fading at 
ambient and is also the most sensitive to humidity. 

 
 
 
 
 

Table 5.  Yellow Patch Density Change at 25 PPM-hours 
Cumulative Ozone Exposure. 

System 5 PPM 0.5 PPM Ambient 
A1 -7.0% -11.2% 0.4% 
A2 -10.4% -13.3% -3.1% 
B1 -0.6% -0.8% -0.5% 
B2 -0.1% -0.1% 0.1% 
C3 -4.3% -7.1% -5.9% 
C4 -4.1% -5.5% -5.8% 
D3 -3.9% -6.2% -4.2% 
E3 -3.1% -5.0% -2.3% 
E4 -2.8% -4.4% -3.6% 
F5 -11.5% -14.1% -7.2% 
G6 -1.2% -1.5% -0.7% 
H7 -14.0% -16.8% -11.5% 

 
 
Trends seen between ozone test concentrations at one 

exposure level were generally the same as those seen at other 
exposure levels.  For example, System G6 was one of the most 
robust systems tested in this experiment and variation seen at 25 
PPM-hours is within the noise of measurement.  However, as 
Figure 2 shows, the fade rate at a 0.5 PPM ozone concentration 
was about 40% greater than at 5 PPM throughout testing at 
multiple cumulative exposure levels. 
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Figure 2.  System G6 Cyan and Magenta Patch Fade For 0.5 PPM and 5 
PPM Ozone Test Concentrations. 
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Up until now comparisons have been made via density 
change.  However, another commonly employed method of 
comparing test results is to set a failure threshold and determine 
the time (or exposure) to failure.  Figure 3 shows what happens 
when applying a 40% fade failure criteria to the cyan patches of 
Systems A1 and C3 run at 0.5 PPM and 5 PPM ozone 
concentration.  Although each is fading about 20% more at 
equivalent ozone exposure at 0.5 PPM compared to 5 PPM, the 
time (or exposure) to reach the failure criteria takes 50% longer 
because of the nonlinear fade rate. 
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Figure 3.  Systems A1 and C3 Cyan Patch Fade For 0.5 PPM and 5 PPM 
Ozone Test Concentrations. 

Conclusion 
This study minimized many factors that adversely influence 

ozone stability testing and thus achieved greater resolution in 
determining the impact of varying the ozone concentration on 
sample fading.  This study also verified previous work that found 
accelerated ozone tests to be representative of ambient air fade. 

However, it also found that most systems tested exhibited 
noticeable and consistent reciprocity failures between the two 
accelerated ozone test concentrations of 0.5 PPM and 5 PPM.  In 
an effort to shorten the test length by applying higher ozone 
concentrations the results would unacceptably lead one to 
overpredict sample robustness.  For one system studied, the fade 
rate was twice as great at the lower concentration for an equivalent 
ozone exposure level. 

Previous studies have argued both for and against the 
presence of reciprocity failure in accelerated ozone testing.  Based 
on data collected in this study, the significance of reciprocity 
failure depends entirely on the particular ink media systems 
investigated.  For example, the ink that showed the greatest 
reciprocity failure on one media showed no reciprocity failure on 
another media.  With current test methods, ink responses to ozone 
and to other environmental conditions are not separable from the 
ink media interactions with ozone and the environment.  
Therefore, the only way to ensure that reciprocity failure is not 
affecting the validity of the test results is to include reciprocity 
testing with every ink media system test. 

Although accelerated ozone tests can provide a general 
approximation of ambient air fade, this investigation also showed 
that minor ambient environmental fluctuations can influence fade 

rates. For example, ink media systems which have been shown to 
fade more rapidly with higher humidity in accelerated testing 
measure as though less affected by ozone at higher humidity at 
ambient conditions.  In an ambient condition, high humidity may 
occur during a low ozone level such that the impacts of humidity 
and ozone are independent, and vice versa.  Designing a test with 
fluctuating ozone and humidity levels may more accurately reflect 
customer experience, but would be difficult to conduct and ensure 
repeatable results.  Consequently, although accelerated ozone tests 
are useful for evaluating image permanence, the results of this 
study show that they are not reliable for predicting image life for a 
consumer.  Therefore, until advances in test equipment make such 
testing practical, it is currently preferable to compare products as 
demonstrated in this paper—by presenting density change (or delta 
E) of different colors at a common ozone exposure level.  Such a 
goal is achievable within the framework of a standardized test 
having controlled testing conditions. 
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