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Abstract 
Following the industry trends, it is clear that commercial 

inkjet printing will compete increasingly with traditional printing 
processes in the coming years. While special paper is already 
available for traditional impact printing processes, papers that 
meet the requirements of high speed inkjet printing are just in the 
infancy of their development. Standard papers, like those found in 
the office, still exhibit significant weaknesses in such important 
properties as optical density, gamut and water resistance.  

A very thin layer of a fumed silica based coating (0.5-2.0 
g/m²) applied to plain paper at the size press improves inkjet 
printing performance. The silica coating behaves as an inorganic 
sponge with a well defined void and channel structure to absorb 
ink rapidly for enhancing color qualities, print uniformity and 
image resolution. In the presentation we show results of a paper 
machine trial and compare nano-structured silica based pigments 
with traditional coating pigments, e.g. calcium carbonate. 
Comparisons are made to other approaches, such as the 
incorporation of multivalent metal ions into the paper. 

Introduction 
Fumed silica is commonly used in coating formulations to 

produce the high quality photo inkjet media that feature instant 
drying times, brilliant colors, uniform ink absorption, superb 
resolution and water fastness. The fractal structure of the 
aggregated particle is the basis which allows the micro-porous 
network to be developed within the coating at a finer scale than 
conventional pigments. This structure provides the essential 
capillary action needed to transport the ink vehicle quickly away 
from the paper surface.  

Two years ago we introduced a concept [1] that transfers the 
basic idea of this technology to plain paper. In the meantime we 
have performed extensive trials on a pilot paper machine and 
carried out additional analytics, which we will report upon in this 
paper.  

Concept 
The concept offers paper manufacturers a solution for online 

use in puddle-type or metered size presses. In spite of its use of 
nanostructured particles, the new concept is affordable and 
effectively raises the printing quality of the correspondingly 
treated papers into another quality class. In addition it enables 
faster ink adsorption behavior needed for increased printing speed 
of web-to-web inkjet presses. 

The process makes use of aqueous dispersions of fumed silica 
(“AEROSIL®”), which are available in both cationic and anionic 
variants. When used in combination with starch or PVA as binder 
or sizing agent respectively, they form the matrix for the 
formulation that is applied on the paper machine online with the 

aid of puddle-type or metered size press. Our pilot tests carried out 
on a Kämmerer paper machine have proven the feasibility of the 
process on a simple puddle-type press and provided important 
discoveries. Even better results are expected on modern metered 
size presses, as leading paper manufacturers have already 
confirmed in operating tests. 

Test conditions 
For the online-sizing trials (Kämmerer machine) a standard 

chemical pulp consisting of birch and pine fibers was used (Hi-Cat 
starch, PCC filler, ASA sizing, Percol and Bentonite as 
microparticle retention aid, no optical brighteners). Fibers were 
beaten to a usual value of 25 °SR (Schopper-Riegler). A fixed 
standard chemical pulp formulation was utilized). Pulp stock 
conductivity and pH were adjusted to the same level for each of 
the trials. The paper machine was run at constant speed (1.8 
m/min) and drying conditions during all trials. The only variable 
was the composition of the sizing solution. The coat weight on the 
top side of the paper was about 0.5 – 0.7 g/m2. 

Used Materials 
For the trials the sizing solutions used were at 11 % solids.  

Either cationic starch or nonionic starch were dissolved in a jet 
cooker and held at a constant temperature of 60 °C before use. 
They were mixed with the fumed silica dispersions at different 
ratios. All results given in this paper were obtained with silica to 
starch ratios of 1:1 or 2:1 (solid/solid). Table 1 lists the physico-
chemical properties of the used fumed silica dispersions. 

Figure 1.  Inkjet printing results after surface sizing with cationic starch (left) 
and with AERODISP® WK7330 + cationic starch (2:1 with respect to solid, 
coating weight approx. 1 g/m2).  
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Table 1: Properties of used fumed silica dispersions 
Product name AERODISP® 

WK7330 
AERODISP® 
W7330N 

Surface charge cationic anionic 

pH 3 10 

Stabilizing additive cationic polymer NaOH 

Silica content 30 % 30 % 

Aggregate size 120 nm 120 nm 

 

Image quality measurements 
The treated papers were printed on various inkjet printers, 

such as Hewlett Packard Deskjet 5652, Epson Stylus PHOTO 
R240, and Canon PIXMA iP6600D. These printers were selected 
for their distinctly different ink sets and printing mechanisms 
employed. The Epson inks typically contain higher concentrations 
of organic solvents which make them more discriminating with 
respect to the paper used. Results on additional printers such as 
Epson Stylus PHOTO R2400, Epson Stylus PHOTO R285, Epson 
Stylus PHOTO R800, HP Photosmart D7360 and Kodak 
Easyshare 5300 are available on request. 

Print patterns were created with CorelDRAW® software, 
which contain the various elements needed for quantifying print 
attributes such as optical density, color gamut area, print mottle 
and grain, color-color bleed and dot circularity. 

All data in this work were obtained with both the “Personal 
Image Analysis System” (PIAS) (QEA, Inc) and the SpectroEye 
Densitometer (GretagMacbeth RP imaging). 

Color density and L*a*b* values were measured using the 
SpectroEye. The gamut area is calculated based on CIELAB a* 
and b* values for the different colored measuring areas. 

For calculating the strike through the reflection at 460 nm of 
the backside (BS) of the printed area (black) and the unprinted 
paper is measured using the SpectroEye calculation for strike 
through: log(RBSunprinted/RBSprinted). 

In order to graphically illustrate the changes in print 
performance versus the corresponding paper sized with 100 % 
polymer, values measured for resolution, color density, gamut, 
mottling & graininess and strike through were converted into 
relative grades with the pigment-free reference at 1.0. Grades 
above 1.0 indicate a performance exceeding the performance of 
the reference. Differences of more than 0.05 are significant. It is 
safe to say that the values for each reference paper itself are 
always dependent on the printer used. 

 
 

Results 

Improved Print Performance 
The improvement in printability of inkjet printers soon 

becomes clearly noticeable and measurable at the minimum 
coating weight of approx. 0.5 g/m2. Although other non-impact 
printing processes such as laser printing do not benefit from the 
thin microporous layer, the papers nevertheless remain compatible 
and can be printed without any loss in quality.   

In inkjet printing, however, it is the high ink homogeneity and 
gamut in particular that are the most eye-striking. But the 
subjective impression of sharpness is also improved because 
fuzziness and roughness decline, particularly in inter-color 
bleeding.  
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Figure 2. Selected printing results from pilot sizing trials (average of three 
printers). We also looked at other properties like resolution etc. which more or 
less remained unchanged 

Process Advantages 
When we observe the process, it is striking that the viscosity 

predefined by the metered size press greatly increases the possible 
solids content of the silica-containing formulation: the formulation 
based on WK 7330 has twice the solids content (21 wt.%, 100 
mPas, pigment/binder ratio 2:1) compared to pure cationic corn 
starch (11 wt.% at 100 mPas). This means lower energy 
expenditure during drying and, depending on the limitations of the 
paper machine, possibly also higher productivity. 
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Figure 3.  Flow curves (Parr Physica MCR300) of sizing formulations 

Surface analysis 
Looking at the paper surface at large magnification under an 

electron microscope (see Figure 4) provides an idea of the critical 
factor that determines the good printing results: a very thin, porous 
coating, acts like a tiny filter and covers the paper fibers.  

(1)

(2)

(3)  
Figure 4. SEM micrographs of the paper surface at low (left) and high (right) 
magnification, respectively. (1) sized with cationic starch only; (2) sized with 
AERODISP® WK7330 + cationic starch (2:1); (3) sized with a micron-sized 
calcium carbonate pigment + cationic starch  

The paper can furthermore absorb the liquid in the inks 
unhindered, while dyes or color pigments attach to the surface of 
the silica particles, thereby enriching the visible surface. This leads 
to the pronounced optical ink densities that are observed. The 
paper surface also becomes visibly more homogeneous, which in 
turn has a favorable effect on the other properties mentioned. 

Penetration behavior 
For the concept presented here, dynamic penetration 

measurements made with ultrasound using the emco DPM-33 
show that water-based liquids have a distinctly faster penetration 
behavior. Here, the capillary forces of the approx. 20 to 100 nm 
wide pores of the silica-based coating play a major role. The next 
generation of faster commercial inkjet printers will find great 
benefit from this property.  
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Figure 5. Penetration analysis with water using emco DPM-33. The marked 
curve (paper sized with WK7330, cationic corn starch 2:1) shows a much 
faster wetting and a quicker capillary penetration than the reference (paper 
sized with cationic starch only) 

Comparison with alternative pigments and 
concepts 

In a comparative study we also looked at non-structured nano 
sized pigments (colloidal silica) and micron-sized coating 
pigments (calcium carbonate), the latter recommended for 
improving inkjet print properties.  

Looking at the SEM images (Figure 4) the surface coverage 
with the calcium carbonate is very non-homogeneous. The large 
pigments provide some additional porosity for ink absorption; 
thus, a slight increase of the printing properties can be noticed. To 
obtain a closed paper surface comparable to the fumed silica 
concept, a coating weight of at least 4 g/m2 is required.  

Using colloidal silica consisting of non structured spherical 
nano-particles leads to no improvements in printability compared 
to pure starch sizing. For more details, see [6]. 

The incorporation of multivalent ions (mostly Ca2+) into the 
paper surface, known for example as “ColorLok”, increases the 
optical densities of pigmented inks. The mode of action is based 
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on the flocculation and destabilization of the pigments when the 
ink drop hits the paper surface. This does not work for the wide 
variety of dye based inks. Compared to the concept using nano-
structured pigments, print and surface homogeneity are not 
affected. In addition, the penetration behavior and speed of the 
surface remains unchanged compare to standard paper. Therefore, 
those papers cannot be printed faster. A combination of 
multivalent ions and nano-structured silica is difficult, but seems 
to be possible. 

  

Summary 
The power of the concept is based on the special fractal 

structure of fumed particles which have been commercially 
produced via a flame process for over 60 years. Two main 
products are recommended, which are both easy to formulate and 
use: AERODISP® WK 7330 (30 % aqueous dispersion, cationic) 
and the anionic variant AERODISP® W 7330 N.  

Besides processing advantages during the application at the 
size press, the improvements of printability are eye-striking:  
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Figure 6. Relative improvements using AERODISP® 

Today’s home and office inkjet printers cannot make use of 
the faster penetration behavior of such papers. However, the 
upcoming generation of commercial inkjet presses will most likely 
need tailored ink-absorbing surfaces incorporating this type of 
technology. 
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