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Abstract
Traditional printing processes usually consist of three ba-

sic colorants, i.e., cyan, magenta, and yellow, for their inherent
subtractive color nature. Black colorant is sometimes adopted to
optimize a printing system between stable neutrality, lower col-
orant consumption, and achieving higher reflection density. The
capability of printing extra color(s) is used in two scenarios: ac-
cent colors to precisely matching colors, and light colors, such as
light cyan and light magenta, to further enhance image quality.
The advantage of adopting light colors to improve print quality
such as granularity is its low development cost compared with sig-
nificantly improving the corresponding complicated fundamental
printing process; however, it requires better halftone design, pre-
cise supplemental colorant replacement strategies, and imposing
an extra cost per page compared with the traditional printing pro-
cess. We will address this system optimization process by quanti-
fying the overall graininess reduction and its corresponding col-
orant consumption increase.

Introduction
Traditional printing processes usually consist of three ba-

sic colorants, i.e., cyan, magenta, and yellow, for their inherent
subtractive color nature. Black colorant is sometimes adopted to
optimize a printing system between stable neutrality, achieving
higher reflection density, and lower colorant consumption. Be-
cause human viewers prefer images with high colorfulness, re-
searchers have been pushing for colorants with high chromaticity.
However, achieving larger color gamut is only one objective of
a digital printing system. Another facet of the printing system
optimization is to reduce imaging artifacts, such as granularity,
mottle, and macrononuniformity, which are caused by its intrin-
sic system noise. Since studies have shown that, the perceived
strength of imaging artifacts, such as graininess and mottle, is di-
rectly related to the luminance and chromatic contrast of selected
colorants [1], a digital printing system needs to strike a balance
between the volume of the achievable color gamut and the sever-
ity of imaging artifacts.

The approaches to address this optimization problem depend
upon the imposed constraints. If the number of available col-
orants is fixed and a minimal volume of color gamut is required,
it becomes essential to improve the printing process; however, if
the printing process has the capability of imaging extra colorants,
it has been shown that supplementing the current printing pro-
cess with light colorants will improve the image quality while at
least maintaining the existing color gamut volume [2, 3, 4, 5].
Although improving the printing process is fundamental to com-
pletely eradicate any imaging artifact issue, the progress has been
slow and costly because of its highly complicated and intercon-
nected nature. On the other hand, supplemental light colorants
can quickly boost the image quality in terms of lower granu-

larity, mottle, better tonal resolution, less perceivable over-print
halftone structures in the targeted color space without modify-
ing existing halftone design, and still benefit from any future im-
provement in the fundamental printing process; however, they
require better halftone design, precise supplemental colorant re-
placement strategies, and imposing an extra cost per page com-
pared with the traditional printing process. In this paper, we will
address the printing system optimization problem via a supple-
mental light colorant by measuring the color granularity within
the color gamut, and the corresponding colorant consumption un-
der various supplemental colorant replacement strategies. Our ex-
periment is conducted on a Kodak Nexpress S3000 digital printing
press equipped with five printing modules, where the fifth module
is fitted with light magenta or light black. A normal ICC workflow
is adopted where a series of five-color substrate ICC color profiles
were built based on the constraint on the maximal supplemental
light color coverage and the relative length of transition between
the normal primary color and its corresponding light color.
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Figure 1. Light/Normal Black and Light/Normal Magenta color ramp trajec-

tories in the CIELAB color space

Granularity Constraint
Although it is possible to select light colorants with any

color, the light versions of the primary colorants, i.e., cyan,
magenta, and black, are usually adopted in the actual practice
[6, 7, 8]. As a result, the physical color rendition in the device
color space can be easily extended from the existing four-color
printing system by replacing one primary color with the com-
bination of the corresponding light and normal colorants [3, 9].
Nonetheless, as shown in Figure 1, the color trajectories in the
CIELAB color space between the normal and light colorant are
usually different. Researchers have suggested to directly con-
struct a substrate ICC color profile according to the colorimetric
measurement on a multicolor test target [4], which is similar to
the approach we adopted in this paper. How to balance between
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the gray component replacement and the fifth/light color compo-
nent replacement becomes a critical step to achieve the optimal
performance.
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Figure 2. Light/Normal Black and Light/Normal Magenta Granularity Target

Besides color matching accuracy, the main objective of
adopting the light colorant is to improve image quality, especially
in granularity; hence, imposing constraint on granularity is essen-
tial to the success of the supplemental light colorant. Two test
targets are designed, as shown in Figure 2, to explore the com-
plete granularity performance with Nr ×Nl color patches where
Nr is the number of sampling points along the normal colorant
and Nl represents the number of sampling points along the light
colorant, which are both set to be 10 in Figure 2. Each color patch
has to reach the minimal size to reliably estimate color granularity
[1].

Our analysis shows that, at each light black or light ma-
genta level, the measured granularity can be approximated by a
quadratic functional as shown below:

Glk(K) = ak2(lk)K2 +ak1(lk)K +ak0(lk) (1)

Glm(M) = am2(lm)M2 +am1(lm)M +am0(lm). (2)

The estimated polynomial coefficients ak2, ak1, ak0, am2, am1, and
am0 are shown in Figure 3, and they can further be modeled by a
set of quadratic polynomials, ΦK(lk),ΦM(lm), of light black and
light magenta. The R2 values of the composite quadratic polyno-
mial models, Glk ◦ΦK or Glm ◦ΦM , for the light black and light
magenta are 0.96 and 0.95, respectively. Figure 4 shows the con-
tours of equal-graininess within the light black/normal black and
light magenta/normal magenta two-dimensional domains.
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Figure 3. Quadratic granularity-variation models for Light Black and Light

Magenta
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Figure 4. Estimated granularity contour for Light Black/Normal Black and

Light Magenta/Normal Magenta

Cost/Quality Tradeoff
While the supplemental light colorant provides immediate

improvement in image quality, this approach also incurs some
disadvantages, such as additional imaging processes needed, in-
crease of cost per page, more difficult color replacement con-
straints, and potential impact on printing speed and productivity
depending upon the architecture of the printing press. The over-
all length of substrate path on the Kodak Nexpress S3000 press
remains as constant regardless of the number of active printing
modules. As a result, there exists no concern in loss of productiv-
ity whether a supplemental light color is adopted or not. Further-
more, because Kodak Nexpress S3000 press is equipped with five
imaging modules, our experiment only include one supplemental
light color, light black or light magenta. They are chosen based
upon the higher luminance contrast of the normal black and ma-
genta colorants than those of cyan and yellow colorants. Conse-
quently, they contribute to more perceivable graininess assuming
the actual imaging noise is the same among all imaging modules,
and the extra light black and/or light magenta should maximize
the improvement on image quality.

Light Magenta
Because the fifth color component replacement using the

light magenta is far away from the gray component replacement
in the CIELAB ICC profile connection space, each color replace-
ment process is controlled independently. While fifth color com-
ponent replacement always begins at the media white point, the
starting point of the gray component replacement varies from
L∗ = 100,90,80,70 in the relative colorimetric intent. Since
the light magenta colorant mainly replaces the normal magenta
colorant, we can expect to observe the granularity improve in
magenta, bichrome red, bichrome blue, and multicolor neutral,
where Figures 5 and 6 show the estimated graininess along the
magenta and black color ramps. Figure 5 indicates that the con-
trolling parameter for the gray component replacement has little
impact around the color space of the magenta primary trajectory,
but the presence of light magenta colorant further improves the
granularity along the neutral axis as shown in Figure 6, where the
estimated graininess of the baseline four-color with gray replace-
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ment beginning at L∗ = 80 approximately equals the five-color
light magenta configuration with gray replacement beginning at
the media white point.
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Figure 5. Estimated graininess along the Magenta ramp in the case of Light

Magenta
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Figure 6. Estimated graininess along the Black ramp in the case of Light

Magenta

Because of the lack of information regarding the actual color
distribution of realistic jobs, a noninformative uniform prior dis-
tribution is assumed where each point in the CIELAB ICC pro-
file connection space is equally likely to be printed. Hence, we
uniformly sample the color gamut of an average press within the
CIELAB ICC profile connection space and simulate the theoreti-
cal colorant consumption based upon the set of derived ICC sub-
strate profiles. The actual colorant consumption depends upon the
dot gain of the printing press. Without focusing on precise col-
orant consumption of a printing press, we assume a simple power
functional to roughly capture the conversion from the theoretical
colorant consumption to actual colorant consumption, where Dot
Gain Index being 1 represents a printing press without dot gain,
and Dot Gain Index being 2 represents approximately 20% dot
gain. Figure 7 shows that, while overall consumption decreases
with increasing dot gain, baseline four-color configuration with
gray replacement beginning from the media white point consumes
the least amount of colorant, and all variant color replacement

configurations with light magenta consume more colorant than
the two baseline four-color configuration.
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Figure 7. Estimated toner consumption of Light Magenta in the case of

noninformative uniform prior distribution
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Figure 8. Estimated graininess along the Black ramp in the case of Light

Black

The color replacement between the light black and normal
black becomes a little tricky since the trajectories of gray compo-
nent replacement and fifth color component replacement almost
coincide with each other. Since it makes little sense to perform
gray component replacement before the light black replacement,
the light black replacement should take precedent over the gray
component until reaching to a predefined highest level of light
black. The second replacement parameter controls the duration
where the light black is approximately maintained at the prede-
fined highest level. Figure 8 shows the measured graininess along
the neutral axis under various light black replacement strategies,
where three distinct groups of graininess behavior occur affected
by the predefined highest level of light black. The duration of
maintaining the highest level of light black only exhibits a sec-
ondary effect in reducing graininess. Compare Figures 6 and 8,
and it shows that light black is more effective in reducing gran-
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ularity near the neutral axis while light magenta will address the
granularity issue in red and blue quadrants within the color gamut
of the printing press.
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formative uniform prior distribution

Figure 9 shows the estimated colorant consumption under
the same noninformative uniform prior distribution assumption.
Use the four-color configurations with two different gray replace-
ment strategies as the colorant consumption baselines, and it is
obvious that the five-color equipped with light black overall con-
sumes less colorant than that with light magenta even though both
five-color configurations consume more colorant than the four-
color baseline.

Conclusion
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Figure 10. Estimated cost ratio of Light Black/Light Magenta relative to

baseline CMYK 4C (UCR/GCR) total cost in the case of noninformative prior

distribution

Our experiment shows that a supplemental light colorant,
such as light magenta and light black, significantly improves gran-
ularity in the targeted color space while incurring slight cost in-
crease. However, because light colorant contains less color pig-
ment than does normal colorant, it should be safe to assume that

the cost of producing light colorant is lower as well. Assuming
all four primary colorants cost the same, Figure 10 indicates the
required discount in the light black/light magenta to match the
overall cost under the four-color baseline configurations.
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