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Abstract 
Quantitative image quality analysis technologies have 

advanced significantly in the past twenty years. Practical 
instruments for objective analysis of engineering quality attributes 
are now used widely and successfully in the digital printing 
industry. However, in the design and optimization of an imaging 
system, measurement of engineering quality alone is not sufficient. 
It is equally if not more important to understand how image quality 
is perceived by the end user. Unfortunately, unlike engineering 
attributes, perceptual image quality is much more difficult to 
measure and quantify. Recognizing the technical challenges and 
the potential gain, we have initiated a study on the feasibility of 
instrumental analysis of perceptual image quality. Given the 
complexity of the problem, we submit that even incremental 
advances make a valuable contribution to the imaging community. 
In this paper, we discuss our methodology and our initial results 
on perceived noise, and present an assessment of the efficacy of 
our approach. 

Introduction 
Image quality involves many different attributes that affect 

viewer preference, including color accuracy, effective resolution, 
uniformity, line quality, gloss, etc… The subject of this paper is 
image uniformity and its counterpart, image noise. The objective is 
to devise a single objective metric that correlates with human 
perception of image noise. 

 
Figure 1. A series of images with different size scale non-uniformity. 

For a digitized image (i.e. represented as a bitmap) there are 
many tools available to quantify image noise [1]. The standard 
deviation of all pixel values provides a simple indication of image 
uniformity. Note that in the ideal case (i.e. a perfectly uniform 
image) all pixel values are identical and the standard deviation is 
zero. But a simple standard deviation metric does not generally 

correlate with human perception of noise, primarily because the 
standard deviation is insensitive to the spatial scale or periodicity 
of variations. It is well know that human contrast sensitivity is 
highly dependent on spatial frequency [2] and therefore very small 
features and high frequency noise are not perceived. Perception of 
noise in color images is further complicated by the tri-chromatic 
nature of human vision; for example, noise in the luminance 
direction is more objectionable than noise in the hue direction. 
Finally, beyond human sensitivity, human preference also plays an 
important role. Viewers tend to object more to large scale noise 
versus small scale noise (of equal magnitude) and to high contrast 
variations versus low contrast variations. It is therefore very 
difficult to create an objective metric to correlate with human 
perception. 

Graininess and Mottle 
Figure 1 shows a series of images comprised of squares with 

exactly two density levels, arranged in a checkerboard pattern. The 
same density levels are used in each image, the only difference 
between the images is the size of the component squares. 

Note that the standard deviation computed for each image in 
Figure 1 is identical. Yet under normal viewing conditions the 
noise in the right-most image, at 2.98 cycles/mm, is not perceived. 
This is explained by the frequency dependence of human contrast 
sensitivity. Viewers also generally perceive the image with 1.49 
cycles/mm to be a “grainy” image, whereas the images at lower 
frequencies are judged to have a different class of non-uniformity 
called “mottle.” Finally, for images with mottle, viewers tend to 
object more to lower frequency variations, although this is contrary 
to the human contrast sensitivity function at the corresponding 
frequencies. 

 
Figure 2. Noise metrics for the images in Figure 1. 

ISO-13660 is an international standard incorporating a wide 
range of print quality attributes, including the uniformity metrics 
graininess and mottle. Graininess is high frequency noise (> 0.4 
cycles per mm) and mottle is low frequency noise (< 0.4 
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cycles/mm). ISO-13660 is intended for monochrome images and 
the units for variation computations are specified as optical 
density. In this study, since we are interested in color images and 
especially human perception of noise, we use the CIE-L*a*b* 
space for all computations. Figure 2 shows standard deviation, 
graininess, and mottle (in L*) computed for the images in Figure 1. 
Clearly the ISO metrics include some frequency sensitivity, and 
therefore are more relevant than the standard deviation which is 
constant for all the images. The mottle metric seems to correlate 
well with perception: at high frequencies the mottle is very small. 
But even in this simple example the graininess metric has a clear 
weakness: at the highest frequency, no graininess is perceived in 
the image but it is at a maximum according to the ISO graininess 
metric. 

Note that graininess and mottle are closely related to the 
simple standard deviation statistic: according to ISO 13660, noise 
is classified as either graininess or mottle, but the total noise is still 
approximated by the standard deviation with no consideration for 
size scale. To agree with perception, we need to develop a noise 
metric that recognizes the variation at 2.98 cycles/mm in Figure 1 
is negligible. 

 
Figure 3. Halftone images at various frequencies. Perception of non-
uniformity decreases with increasing half-tone frequency. 

Spatial Filtering 
Figure 3 shows three images with different halftone 

frequencies. The perceivable noise in the images is inversely 
related to the halftone frequency (higher frequency corresponds to 
less perceived noise). 

 
Figure 4. The human visual transfer function (VTF) showing sensitivity as a 
function of frequency, and the power spectra from the halftones in Figure 3. 

Since the standard deviation metric is insensitive to variation 
in spatial frequency, the standard deviation for all three images in 
Figure 3 is similar. However, we can apply a spatial filter to the 
image to transform the bitmap into a better representation of what 
is perceived by a human viewer. The filtering is done in the 
frequency domain using a 2-dimensional version of the human 
Visual Transform Function (VTF), shown in one dimension as a 
dotted line in Figure 4. Figure 4 also shows the power spectra for 
the three halftoned images. 

Note that the VTF in Figure 4 correctly indicates the low 
perceivability of the high frequency halftone pattern at 120 lpi. 
Applying the 2-dimensional VTF filter to the image before 
computing the standard deviation yields a noise metric in better 
agreement with perception, as listed in Table 1: 

 
 

 
Figure 5. Noise metrics for the images in Figure 1 after the image has been 
filtered by the VTF (in two dimensions). 

 
Figure 6. Noise metrics for the images in Figure 1 after the image has been 
filtered by the VTF (in two dimensions) and using a tile size of 0.35mm for 
mottle (versus 1.27mm specified in ISO-13660). 

The same filtering when applied to the images from Figure 1 
improves the correlation between the subjective graininess and the 
ISO graininess metric as shown in Figure 5. Note that at high 
frequencies the graininess becomes negligible in agreement with 
perception. However, the graininess metric is now greater in value 
than the mottle metric for all of the images except the lowest 
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frequency. This does not agree with perception: according to most 
viewers’ perception the images <1.49 cycles/mm exhibit “mottle” 
rather than “graininess.” We can improve the correlation by 
adjusting the tile size used in the mottle calculation from 1.27mm 
to 0.35mm. This essentially changes the size scale threshold 
between graininess and mottle. Results are shown in Figure 6. 

Contrast 
Figure 7 shows three images with the same size scale and 

variation magnitude (in the L* dimension), but with different 
average luminance. The objective noise metrics (standard 
deviation, graininess, and mottle) make no distinctions among 
these three images. Yet human observers perceive the noise to be 
worse in the darker images. Generally, this preference is related to 
the contrast in the image, where contrast is the variation divided by 
the mean value. Simply scaling the noise metrics (standard 
deviation, graininess, and mottle) by the contrast provides better 
agreement with perception. 

 
Figure 7. Images with the same spatial size and magnitude variations, but at 
different mean levels of luminance. Viewers generally judge image A to be 
most objectionable. 

Figure 8 shows a density tone sweep corresponding noise 
metrics before and after scaling by contrast. 

 
Figure 8. Noise metrics for a half-tone sweep, before scaling by contrast 
(ISO-13660) and after scaling by contrast (Adjusted CNI). 

Note that the ISO-13660 noise metric shows little variation 
throughout the tone sweep (blue curve with diamond markers in 
Figure 8). But viewers generally perceive more objectionable non-
uniformity near patch #9. After scaling by contrast, the noise 
metric agrees with observed viewer preference (red curve with 
triangle markers in Figure 8). 

Noise in Color Dimensions 
Since color perception is tri-chromatic in nature, color images 

include two more dimensions where noise may be present. In the 
CIE XYZ color space, the tristimulus values X, Y, and Z are 
roughly red, green and blue, respectively. 

The sensitivity of human perception to variations in each of 
these channels is different, so an objective metric for image noise 
must weigh noise in each of these dimensions accordingly. Figure 

9 is an example illustrating that variations in the blue channel are 
less noticeable than variations of the same spatial scale and 
magnitude in the green and red channels.  

 
Figure 9. Images A and B have the the same spatial size and magnitude 
variations, but the variations in A are in the a* channel and in B they are in the 
b* channel. Color separations are shown to the right of each image. Note that 
most of the variation in image B is in the blue channel. Viewers generally 
judge image A to be less uniform. 

The factors used to weigh the color noise, α, β, and γ, are 
determined empirically and their use is described in the next 
section. 

Composite Noise Index 
To develop an objective metric that correlates with subjective 

perception of image noise, it is important to understand the factors 
that influence perception and give them proper weight. As 
described above, the key factors include: 

1. Variation magnitude 
2. Spatial size and frequency of variations 
3. Image contrast 
4. Relative importance of variations in different color 

dimensions 
 
The first factor, variation magnitude, is quantified by the 

standard deviation, which is the starting point for all the basic 
noise metrics (standard deviation, mottle, and graininess). The 
second factor, spatial size, is covered by filtering the image 
according to the VTF. Also, proper selection of the mottle tile size 
provides a meaningful distinction between graininess and mottle. 
Adding weights according to image contrast and color dimension 
leads to the composite noise index as follows: 

 

 
 

where N is the composite noise index, α, β, and γ are weights 
representing the influence of the L*, a*, and b* variations 
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respectively, µL is the mean in the L* channel, σx is the standard 
deviation in the x channel (where x is L, a, or b), and  and  
are the graininess and mottle metrics from the spatially filtered 
image respectively in the x channel (where x is L, a, or b). Note K 
is a scalar selected for convenience just so that the final noise 
metrics are in a familiar range for “real world” images (roughly 0 
to 100). 

Values for the weights, α, β, and γ, are determined empirically 
so that the composite noise index is well correlated with subjective 
perception of image noise in color images. Note that since the 
composite noise index, N, is a combination of grain and mottle, it 
is closely related to the standard deviation which could be 
computed for the spatially filtered image and adjusted by the color 
channel weights, α, β, and γ. 

Application to Printed Images 
Figure 10 shows images scanned from a wide range of 

samples printed with both laser and inkjet printers. The images 
shown are medium gray patches, intended to be uniform. The 
images are arranged in order of decreasing composite noise index.  

 
Figure 10. Scanned images of medium gray patches printed with a range of 
technologies. Composite noise index values are displayed. 

 
Figure 11. Scanned images of medium red patches printed with a range of 
technologies. Composite noise index values are displayed. 

The ranking by composite noise index (CNI) correlates well 
with the subjective ranking determined by a panel of judges. The 
method works well despite the variation in printing technologies 
and the obvious variations in lightness and hue. 

A similar correlation is observed for medium density red 
patches, as illustrated in Figure 11. This lends credence to the 
approach even for a very different hue regime. Note that the range 
of CNI values in Figure 11 overlap the values in Figure 10, and 
when all 18 images were sorted by CNI, the ranking is reasonable 
despite the mixture of grey and red images. 

 
Figure 12. Scanned images of various colored patches all with approximately 
equal composite noise index values. 

Various color images with approximately equal CNI values 
are shown in Figure 12. Indeed these images are subjectively 
assessed to be very similar in uniformity, despite the color 
differences. This indicates a good potential for using the CNI 
metric to quantify image noise for a broad range of images. 

Summary 
A single metric, composite noise index, CNI, has been 

proposed as an objective measurement of image noise which 
correlates well with subjective perception. The CNI involves 2-
dimensional image filtering using the human visual transform 
function (VTF) to account for the spatial frequency dependence of 
variation perception. The CNI is also scaled according to image 
contrast and different empirically determined weighting factors are 
used for each color dimension. 

The CNI metric has been shown to correlate well with 
subjective assessment of noise in a variety of images, including a 
range of printing technologies, image uniformity, colors, lightness, 
and hues. 
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