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Abstract 
A simple large-scale experimental apparatus that is capable 

of reproducing the jetting conditions found either in drop-on-
demand (DoD) or continuous ink jet (CIJ) print-heads is 
presented.  The design allows the direct observation of phenomena 
and measurement of conditions that are difficult or even 
impossible to record or modify in commercially available print-
heads. In the DoD mode, the setup permits the observation of the 
meniscus motion as well as recording of the pressure pulse in the 
fluid inside the print-head. Backlit imaging has been used to 
determine the drop speed, number of satellites and droplet 
behaviour. In the CIJ case, the setup allows the direct 
measurement of the jetting pressure and the modulation amplitude 
in the fluid inside the print-head. These characteristics allow the 
determination of the break-up curve for modulated jets in terms of 
the pressure modulation amplitude and the modulation frequency. 
Measurements from this system can readily be compared with 
outputs from theoretical models or numerical simulations, as 
parameters such as speed and pressure are directly measured. 

I. Introduction 
The first successful attempts to commercialize inkjet print-

heads were carried out by several companies during the 1960s and 
70s, including A.B. Dick Videojet, Hewlett-Packard and IBM [1]. 
Since then, the industry has grown substantially and it is now 
possible to print at tens of pages per minute at resolutions up to 
thousands of dots per inch. As ink jet printing is a non-contact 
technology, it has attracted attention for new applications ranging 
from the printing of electronics to the deposition of biomaterials 
[2]. Current challenges are to improve the reliability, quality and 
speed of the process.  Variables such as the fluid viscosity, surface 
tension and density as well as the print-head nozzle diameter and 
length play a decisive role in determining the dynamics of the 
droplet in both CIJ and DoD systems [3]. In addition, the driving 
waveform critically affects the droplet speed and the number, 
relative position, size and velocity of any satellite droplets. In a 
DoD system, the drive signal usually consists of one primary pulse 
to eject the droplet followed by one or more pulses to control the 
formation of satellites; the shape of the pulses is usually defined in 
terms of the pulse height and length. In a CIJ system, the drive 
waveform is usually sinusoidal, with the amplitude and frequency 
being selected to avoid satellite drops. Generally, the fluid 
properties and the nozzle size are chosen to control the size and 
speed of the main drop, while the properties of the waveform are 
used to control the behaviour (or existence) of satellite droplets.  
Optimization of the conditions is usually an empirical process.  
Unfortunately, the optimum parameters are often valid for a single 
print-head–ink system, and changes in the ink which alter any of 
its physical properties (e.g. viscosity, surface tension or speed of 
sound) result in the need for a new optimization procedure.  

Ideally, a computer model which incorporated a full description of 
the fluid properties, drive waveform and nozzle geometry would 
allow the optimal operating conditions to be predicted. However, 
such models encounter difficulties because the fluid dynamic 
conditions inside most print-heads are difficult to quantify and 
must be treated approximately; it is then not clear whether the 
differences found between simulations and experiments are caused 
by defects in the physical model, its embodiment into computer 
code, or the lack of reliable data on the boundary conditions 
relevant inside the print-head. For DoD, neither the initial position 
of the fluid meniscus nor the pressure response to the electrical 
drive signal are usually known for most commercial print heads. In 
CIJ, the pressure or velocity response to the electrical drive signal 
is also often unknown. 

The apparatus described here was designed so that all the 
variables that are impossible or difficult to record in a typical 
commercial print-head are accessible to measurement and control. 
Briefly, this design permits the direct observation of the fluid 
meniscus and the direct measurement of the dynamic pressure and 
the fluid velocity inside the print-head at all times. In addition, the 
inner nozzle geometry is easily observed and modified to carry out 
experiments on nozzle reliability and characterization.  By using 
suitable fluids and jetting conditions, the key fluid mechanical 
conditions in real printhead nozzles and jets, as represented by the 
Reynolds (Re) and Weber (We) numbers, can be reproduced 
within this large-scale model.  Nozzle diameters from 100 μm to 
2.2 mm were tested under conditions which covered the regime of 
Re and We in which most commercial print-heads operate. 

II. Experimental system  
Large-scale CIJ print-head systems have been built or used in 

the past to validate computer models or determine the parameters 
affecting the formation of droplets and their satellites [4, 5].  
However, these studies were performed in different Re and We 
regimes from those relevant to the operations of typical 
commercial print-heads.  Studies of DoD systems have described 
the flow structure inside a commercially-available print-head but 
these were restricted to a single nozzle geometry and a specific 
model fluid [6]. In the light of these previous investigations, the 
aim of the work described below was to produce a versatile and 
well-characterized system in which CIJ and DoD experiments can 
be carried out within a wide range of operating parameters, 
including those conditions found in typical commercial printing 
[7]. The system was therefore designed in such a way that the 
nozzle geometry, the driving waveform and the fluid properties 
could be easily varied. These factors determined the designed and 
construction of the apparatus. Most commercial print-heads do not 
permit optical access to the ink channels or to the regions internal 
to the nozzle, but the large-scale apparatus was constructed from 
transparent acrylic (PMMA: Perspex/Plexiglas). The use of this 
material allows observation of the motion of the ink meniscus and 
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the use of velocimetry techniques such as particle image 
velocimetry (PIV) and laser Doppler anemometry (LDA), within 
the head chamber and the nozzle. It is also compatible with a wide 
range of fluids. The second important factor in the design was the 
choice of actuator, as it was required to operate in both CIJ and 
DoD modes. The present system utilizes an electromagnetic 
transducer (LDS Test and Measurement Ltd, model V201 vibrator) 
which is capable of operating with arbitrary waveforms within the 
range from 5 Hz to 13 kHz and providing a force of up to 26.7 N. 
The final factor was the size of the print-head, which was chosen, 
in combination with the fluid properties and drop ejection velocity, 
to allow experimental measurements of the internal velocity fields 
and pressure transients.  

   The print-head consists of three 10 mm thick acrylic plates 
plus the nozzle plate; the system is shown schematically in Fig. 1 
and fully described in [7].  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Cross-sectional view of the large scale print-head.  

The fluid chamber is formed by a 30 mm diameter hole 
through the acrylic plates, which are clamped together by four 
stainless steel M3 screws and nuts, with sealing O-rings; the 
nozzle is formed in the lowest plate which is adhesively bonded to 
the plate above. The top of the chamber is sealed by a 1 mm thick 
rubber membrane which separates the fluid from the vibrator rod 
and transmits the pressure modulation to the fluid. The middle 
plate accommodates ports to supply and clear the fluid to and from 
the print-head. The lower plate houses a miniature pressure 
transducer located on its inner wall (Measurement Specialties, 5 
mm EPX series) and in contact with the fluid. This transducer is 
used to measure the dynamic pressure in the liquid in response to 
the action of the vibrator, in both DoD and CIJ modes. The nozzle 
plate is readily exchanged and modified, which facilitates 
investigation of the influence of nozzle size and geometry on the 
jetting behavior. An example of this is shown in Section III.  

The print-head is operated with the vibrator rod in contact 
with the rubber membrane. The vibrator is used, driven by an 
appropriate electrical signal, either to drive the liquid out of the 
nozzle in DoD mode or to modulate a continuously flowing jet in 

CIJ mode. Essentially, the liquid pressure in the chamber 
determines the jetting mode; in DoD mode this pressure is adjusted 
until the position of the meniscus, in the absence of any drive 
signal, lies at or close to the tip of the nozzle, while in CIJ mode 
the liquid is pumped continuously into the head, generating an 
internal pressure which drives the liquid through the nozzle and 
creates a jet of the desired speed. 

III. Drop on demand mode 
For drop-on-demand operation the system can be operated in 

pull-push, push-pull or simply in push modes. These modes are 
determined by the shape of the electrical drive waveform. With the 
meniscus initially located at the nozzle exit, the ejection of a 
droplet is achieved when a positive pressure transient is produced 
by the vibrator.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Two examples of the pressure response for two different electrical 
drive waveforms (top) for operation in DoD mode 

When the system is run in DoD mode, the pressure transducer 
allows direct measurement of the pressure fluctuation within the 
chamber which leads to ejection of the fluid. Two examples, for 
drive signals of 2.5 ms and 5 ms duration, are shown in Fig. 2. 
This simple instrumentation allows the influence of waveform 
shape on the formation of satellite drops, for example, to be 
studied. It also allows direct measurement of the pressure transient 
in the head, and through use of suitable optical methods, velocity 
distributions to be determined both upstream and downstream of 
the nozzle. The effects of varying nozzle geometry can also easily 
be studied at this large scale, which facilitates the fabrication of 
experimental nozzles. Fig. 3 shows the differences in the ejection 
and evolution of two jets generated from the same experimental 
fluid, by the same drive waveform, but with different nozzle 
geometries. Significant differences are seen in main drop speed 
and satellite behaviour. 
 

.  
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Figure 3. Examples of jet ejection from the large-scale system in DoD mode. Two 1.25 mm diameter nozzles with different inlet geometries were used: the left-
hand sequence was obtained with a cylindrical nozzle, while the right-hand images relate to a conical nozzle (90 degrees included angle). Identical drive 
waveforms (10 V 15 ms square pulses).The fluid was a 50:50% glycerol-water mixture, with density 1208 kg/m3, viscosity 55 mPa s and surface tension 64.6 
mN/m.  The main drop speeds differed by 5% (0.54 m/s vs 0.51 m/s); more importantly, the final number of satellites differed between one and two. 

IV. Continuous inkjet mode 
Continuous jetting in this large-scale system can be 

produced in various ways. The simplest is to pressurize the 
liquid inside the print-head; in the present experiments this was 
done by pumping the fluid into the print-head using a stable 
electric pump. The modulation required to induce the Rayleigh 
break-up of the jet is produced by the vibrator. In the same way 
as in the DoD mode, the pressure sensor in the chamber allows 
the direct measurement of the modulation amplitude and 
frequency within the print-head. This allows the break-up length 
for a modulated jet (i.e. the distance along the jet at which it 
first breaks into discrete drops) to be determined in terms of the 

pressure modulation amplitude, and not only in terms of the 
voltage input to the modulating transducer as is more common 
for commercially available CIJ printheads. Examples are shown 
in Figs. 4 and 5. This allows detailed comparison to be made 
with the predictions of theoretical models or numerical 
simulations since the break-up curve can be determined based 
on an intrinsic variable (pressure) [8]. Fig. 5 shows an example 
of a break-up curve which relates break-up position to the 
measured value of modulating pressure; Re and We numbers of 
these experiments are within the range shown by commercially 
available CIJ printheads running with methyl ethyl ketone 
(MEK) based ink .  
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Figure 4. Images showing the response of a modulated continuous jet, 
from a 2.2 mm nozzle, to the measured value of modulation pressure 
amplitude. The driving waveform was purely sinusoidal at 333 Hz, and the 
droplet spacing was 9.89 mm.  The images all start at a distance of 80 mm 
from the nozzle to focus on the break-up region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Break-up curve for a jet from a 2.2 mm. The dimensionless 
break-up length is the length divided by the nozzle diameter. 

Finally, Fig. 6 compares the break-up of two continuous 
jets at different scales: the upper image shows a modulated jet 
from a commercial system with a 60 µm nozzle, and the lower 
images show the break-up of a 2.2 mm jet from the large-scale 
system with the same Re and We numbers as the first one.  

IV. Conclusions and future work 
The apparatus presented in this paper has wide 

applicability. It is currently being used to test Lagrangian 
numerical simulations for both the CIJ and DoD modes. For this 
purpose the apparatus allows velocity profiles to be measured 
by laser Doppler anemometry and particle image velocimetry 

during jetting.  The apparatus can also be used to evaluate the 
performance of different nozzle geometries in both printing 
modes.   

 
                                                                                                                      

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Comparison of CIJ jet break-up at two different scales. The upper 
image of each pair shows the break-up of an MEK-based ink from the 60 
µm diameter nozzle of a commercial print-head, while the lower images 
show a jet of water/glycerol mixture from a 2 mm diameter nozzle from the 
large-scale system. In both cases Re = 164 and We = 409. 
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