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Abstract 
We present an analysis of an electrostatic MEMS squeeze-

film dominated drop ejector. The MEMS ejector consists of a 
microfluidic chamber, an orifice plate, and an electrostatically 
driven piston positioned a few microns beneath the orifice. The 
piston is supported by cantilevered flexural members that act as 
restoring springs. To eject a drop, a voltage is applied between the 
orifice plate and the piston, which produces an electrostatic force 
that moves the piston towards the nozzle. The moving piston 
generates a squeeze-film pressure distribution in the gap region 
above it that acts to eject the drop. A prototype MEMS drop 
ejector has been fabricated and characterized at Sandia National 
Laboratories. In this presentation, we discuss the operating 
physics of this device, and simulate its performance using both 
coupled fluid/structure CFD analysis and a lumped-element 
electromechanical model. We study key performance parameters 
such as piston displacement and pressure generation.  

Introduction 
Micromachined systems are finding increasing use for 

applications that require the controlled generation and delivery of 
picoliter-sized droplets. Common applications include biomedical 
and biochemical microdispensing and most notably, inkjet 
printing. The most common MEMS drop ejectors operate in a 
drop-on-demand (DOD) mode. In DOD devices, micro-droplets 
are produced as needed by generating a sharp short-lived pressure 
pulse within a microfluidic chamber beneath an orifice plate. The 
pressure profile is tuned to eject a droplet with a desired volume 
and velocity. The most common methods for producing the drop 
ejection pressure involve piezoelectric actuation or the generation 
of a thermally induced vapor bubble (bubble-jet). In this 
presentation we discuss an alternative method of drop generation 
that is based on electrostatic actuation. Specifically, we study a 
MEMS drop ejector that consists of a microfluidic chamber with a 
piston that is suspended a few microns beneath and orifice plate 
(Fig. 1). The piston is supported by cantilevered polysilicon 
flexure members that act as restoring springs when piston is 
displaced from its equilibrium position (Fig. 1a). To eject a drop, a 
potential difference is applied between the orifice plate and the 
piston, and this produces an electrostatic force that moves the 
piston towards the orifice. The moving piston generates a squeeze-
film pressure distribution in the gap region above it that acts to 
eject the drop (Fig. 2). Specifically, a peak pressure (stagnation 
pressure) obtains at a specific radius (stagnation radius), which is 
greater than the orifice radius. Thus, the fluid within the stagnation 
radius is confined, and forced through the nozzle as the piston 
moves towards it. A portion of this fluid ultimately detaches from 
the ejector and forms into a droplet; the remainder retracts back 
into the ejector as the piston returns to its equilibrium position. A 

drop ejector based on this principle has been fabricated and 
characterized at Sandia National Laboratories (Fig. 1) [1,2]. 

 

 
 

Figure 1: MEMS drop ejector (adapted from reference [1]): (a) schematic 
showing cantilevered piston and cut away view of nozzle plate , (b) close up 
view of orifice and piston, and (c) SEM of ejectors (cover removed). 

In this paper, we discuss the basic operating physics of the 
ejector, and we present an analytical lumped-element model for 
predicting its performance. We use the model to study device 
performance. We compare the analytical predictions with CFD 
analysis that takes into account the coupled piston-fluid 
interactions. 

Analytical Model 
We model the drop ejector using a lumped-element 

axisymmetric analysis (Fig. 2). The motion of the piston is 
obtained from the equation for the force balance on the 
piston 
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where pm , ( )px t , and ( )pv t are the mass, position,  and 

velocity of the piston, ( )effm t  is the effective mass of the fluid 

that it accelerates, ( )aF t  is the applied electrostatic force, k is a 
spring constant for the polysilicon support members, and  

( , , )pp r v t is the squeeze-film pressure distribution that 

develops between the piston and the nozzle, which acts to resist 

the piston motion. The term fF∑ represents other forces due to 

the fluid motion. In our analysis, the electrostatic force is applied 
only to the portion of the piston surface that overlaps the nozzle 
cover plate. 

 

Figure 2: Axisymmetric model of MEMS drop ejector. 

Stagnation Pressure 
The pressure distribution ( , , )pp r v t  developed by the 

moving piston is obtained by applying Reynolds lubrication theory 
to the axisymmetric geometry shown in Fig. 2. The pressure above 
the piston satisfies the following equation  
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where μ  is the fluid viscosity, pv  is the piston velocity, or  and 

pr  are the radius of the orifice and the piston respectively, and 

( )h t  is the distance from the piston to the nozzle plate. The 
general solution to this equation is of the form 
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where 1c and 2c  are constants determined from boundary 

conditions [2]. The pressure distribution (3) peaks at a value sp  at 

the stagnation radius ( )sr t , 
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as shown in Fig. 2. We assume that fluid above the piston and 
within the stagnation radius ( ( )sr r t≤ ) flows towards the 

orifice, while fluid beyond this point ( ( )sr r t> ) flows into the 
reservoir. The boundary conditions for this problem are  
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where ( )Bp t and ( )Rp t  are the pressures beneath the orifice 

( )or r≤ , and at the edge of the piston, respectively, which are 
related to the flow rates at those points. Analytical expression for 

( , )p r t , ( )sr t ,  ( )Bp t  and ( )Rp t  can be found in the 
literature [2].  

Effective Mass 
We take into account inertial effects by estimating the mass of 
fluid accelerated by the piston as it moves. As above, we assume 
that the fluid within the stagnation radius flows towards the orifice, 
while the fluid beyond this point flows through the gap into the 
reservoir. From our analysis [2] we find that the total effective 
mass of the fluid is  
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Equation of Motion 
Equation (1) contains an expression fF∑ that accounts for 

additional forces due to fluid flow. We collect all the relevant 
terms and obtain the following equation of motion for the piston 
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To perform device simulation, we integrate this nonlinear ODE 
using a fourth-order Runge-Kutta method.  

 

Results 
We use Eq. (7) to study the behavior of the drop ejector. We 

solve for the piston velocity, and use this to obtain the average 
velocity ( )ov t  and volume flow rate ( )oQ t of the fluid ejected 
through the nozzle,  
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It is important to note that this analysis does not take into account 
the complex free-surface dynamics that govern the fluid-nozzle 
interaction and the ultimate formation of the drop, i.e. pinch-off, 
satellites etc. To compensate for this, we estimate the actual 
observed flow rate ( ) ( )exp oQ t Q tβ= using a fitting parameter 

β ,  which we determine using CFD analysis. Once determined, 
this parameter is fixed for all of the analysis. We also track the 
total volume of fluid ejectV  ejected during actuation by integrating 

the flow rate through the orifice during the applied force,  
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where τ  is the duration of the applied voltage or E field.  

We apply the model to an ejector with an orifice radius or =10 
µm. The piston is polysilicon with a thickness of 2 µm. The 
reservoir gap is g = 10 µm, and the fluid is water. We study the 
ejection process using a constant electric field and no spring 
restoring force ( k = 0). The applied field is E = 25 V/μm and the 
activation period is 4.4 sτ μ= . During this time, the applied 

electrostatic force on the piston is ( )2 2 2
a p oF (t)= επ r - r E / 2  

where 070ε ε= .   
We track the piston velocity, flow rate through the orifice, and 

ejected volume. We perform a parametric analysis where we vary 
the piston radius pr  = 50, 60 and 70 µm. For each radius, we 

evaluate ejection performance for three different initial piston-to-
nozzle distances 0h = 3.5, 4.0 and 4.5 µm. We calibrate our 
analytical model using CFD analysis that takes into account fluid-
structure coupling, i.e. the displacement of the piston depends on 
the applied electrostatic force, and the resistance to motion due to 
pressure in the fluid.  

We use the FLOW-3D software for the CFD, which is a 
volume-of-fluid (VOF)-based solver. From our CFD analysis we 
determine a fitting parameter β  = 0.75, i.e. the analytical model 
over predicts the ejected volume by 25% compared to the CFD 
analysis. This is expected as the model does not take into account 
several effects that tend to lower the ejected volume including the 
back pressure at the orifice due to the developing meniscus etc.   

We use the same value of β  for all our analysis. The analytical 
and CFD predictions of ejected fluid volume are compared in 
Table 1. A typical analytical calculation required only a few 
seconds to complete, while the fully-coupled CFD required 55 min 
to simulate 4.4 µs of the ejection process. 

 
Table 1: Comparison of total volume ejected through the 

orifice during the ejection period 4.4 µs.  

Next we compare the piston displacement, flow rate through 
the orifice, and ejected volume (0 ≤ t ≤ τ) for the 140 µm piston 
with an initial position 3.5 µm beneath the nozzle. These are 
shown in Figs. 3, 4 and 5, respectively. Note that the analytical 
model tends to over predict the piston displacement and orifice 
flow rate during the initial stage of ejection, and under predict 
these variables during the latter stage.  A CFD analysis of drop 
ejection for the 140 µm piston with h0= 3.5 µm is shown in Fig. 6. 
The final ejected drop volumes and velocities from the CFD 
analysis are given in Table 2. Only the primary drop volumes are 
recorded, i.e. satellite drops are not included. 
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                  Figure3: Piston displacement (Rp = 70 um, h0 = 3.5 um). 
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                  Figure 4: Orifice flow rate (Rp = 70 um, h0 = 3.5 um). 

 QAnalytical /QCFD 

 Rp (µm) 

 50  60 70  
h0 (µm)  

3.5 4.13/4.4 4.93/5.2 5.67/5.6 
4.0 4.79/5.0 5.7/5.7 6.64/6.35 
4.5 5.27/5.54 6.4/6.35 7.48/7.05 
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                 Figure 5: Ejected volume (Rp = 70 um, h0 = 3.5 um). 

Perfomance and Modeling Issues 
  
 From a performance perspective, one of the most fundamental 
issues with the electrostatic ejector is the potential for electric 
breakdown across the ink. Specifically, the E field needs to be kept 
below the breakdown value (nominally 30 V/μm for H2O) as the 
piston moves towards the nozzle. This can be achieved using a 
current source, or reducing the voltage during ejection [1]. Another 
performance issue is the potential for electrolysis and gas bubble 
generation.  This can be overcome by alternating the sign of the 
voltage pulse during each microsecond.  
 From a modeling perspective, a critical issue is our 
assumption that fluid is a perfect dielectric. Aqueous fluids have a 
finite conductivity σ . Therefore, joule heating takes place within 
the ink during ejection, and the heating power density is 

2P Eσ= .  This heating can degrade ink quality, and therefore 
additives may be required to suppress σ . The effects of the  
conductivity on device performance can be included in the 
lumped-element model via the addition of a coupled electrical 
equation [3].   

Conclusion 
 
We have presented an analysis of the squeeze-film dominated 

electrostatic MEMS ejector shown in Fig. 1.  We have predicted its 
performance using both a lumped-element model and CFD 
simulations. The model needs to be calibrated using a limited 
number of CFD simulations in order to provide more accurate 
estimates of the orifice flow rate and total ejected volume. Once 
calibrated, the model enables rapid parametric analysis of ejector 
performance as a function of key device parameters including the 
piston size, orifice diameter and initial gap beneath the nozzle. A 
key assumption in the model is that the fluid is a perfect dielectric. 
Thus, it ignores conduction current in the ink and associated joule 
heating, both of which can limit device performance.  
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Figure 6: CFD simulation of drop ejection: (a) t = 4.4 µs, (b) t = 10 µs, and (c) 
t = 20 µs. 
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