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Abstract 
A combination of novel piezoelectric inkjet print head 

technologies such as greyscale, shared wall and genuine through-
flow have led to the development of inkjet print heads able to 
deliver the quality and reliability demanded by modern single-pass 
printing applications.  While shared wall technology can provide 
benefits such as acoustic firing and reduced drive voltage, there 
are limitations in the final achievable firing frequency, dictated by 
a 3-cycle firing pattern (active-idle-idle).  As a result the print 
speed is restricted.  

Recent advances in the exploitation of the base shared wall 
technology have allowed the development of single cycle nozzle 
operation (always active) for shared wall devices. This has yielded 
approximately a three-fold increase in firing frequency and hence 
the three-fold increase in print speed from a print head of similar 
footprint. Such dramatic improvement has been possible by deeper 
understanding of the events involved in the complete drop ejection 
cycle combined with clever rearrangement and overlapping of the 
events for arrays of nozzles working in synchronization.   

Three implementations of a single cycle operation have been 
explored, some which impose imaging limitations and others 
which use technically complex solutions but imaging capabilities 
are unhindered. Commercialization of these technology variants is 
currently underway with some already deployed in end user 
production environments. 

Introduction 
Digital printing technologies have displaced many analogue 

imaging processes and some have enabled new markets. 
Increasingly, digital inkjet is used to replace certain deposition and 
printing technologies in the fabrication of devices, e.g. 
manufacture of 3D components, displays, solar panels and 
electronic circuits.  The emerging digital technologies are favoured 
for their increased agility and efficiency when compared to many 
of the incumbent analogue printing processes, but often the raw 
production throughput of the digital process is reduced.  There are 
many opportunities for a digital printing technology which is 
capable of combining increased production throughput with the 
other key demands of industrial inkjet applications.  

The shared wall piezoelectric inkjet actuator has been chosen 
by many print head manufacturers and is widely employed in 
printing systems addressing a diversity of imaging and deposition 
applications.  The physical structure of this type of device is 
shown in Figure 1 and comprises a linear array of walls formed in 
a piezoelectric material with electrodes connected to each channel.  
A field across each wall causes a deflection in the shear mode and 
pressure change in the fluid.  The simplicity of this structure, 
efficient use of piezoelectric material, small footprint and careful 
process design enables low fabrication costs and high native 

resolution.  With many of the processes adapted from semi-
conductor, MEMS and optical industries capital equipment is 
readily accessible.  Today implementations of the shared wall 
actuator operate by deflecting the wall pair which neighbours the 
channel from which droplet ejection is required.  The displacement 
of each wall generates a pressure of ½P so collectively a pressure 
pulse of magnitude P, sufficient to enable droplet ejection.  As a 
consequence opposing pressures, resulting from the same 

oscillation but 180 
degrees phase shifted, of 
magnitude ½P result in 
neighbouring channels.  
If these are not well 
managed they can cause 
accidental droplet 
ejection or air ingestion.  
For example, were 
alternate channels to be 
operated a common 
neighbour would receive 
pressure contributions of 
½P from each, so that 
ejection would occur. 

Figure 1.  Micrograph of a shared wall array 

A common approach to solve these problems is the operation 
of the channels in a cyclic manner such that the pressure in 
neigbouring channels is prevented from exceeding ½P and is 
allowed to decay while channels assigned to other cycles are 
active.  Unfortunately this approach allows only one third of the 
channels to function, i.e. while their phase is active, so the 
resulting print frequency is likewise reduced.  Devices operating in 
this 3-cycle mode yield linear print speeds near to 0.5 ms-1, which 
at an effective resolution of 1080 dpi (360 npi, 8 grey levels) in a 
single pass, has proven satisfactory in many a wide range of 
applications.  However, modern printing systems (e.g. those with 
high speed scanning carriages, and web or sheet fed single pass 
transports) demand additional productivity such that increased 
deposition rates are sought. 

A value metric employed to rank the relative performance of 
print heads is that which calculates the volume of ink delivered per 
unit cost of the print system, for example pl.kHz/$.  Some 
developers, accepting the doubling of print head cost, have shown 
how productivity of the system can be increased by stacking a 
second array of print heads in the print direction.  Others have 
employed print heads configured to eject at a higher frequency 
from nozzles communicating with alternate channels, but 
accepting this productivity is hampered by the reduction in active 
nozzles.  In both examples, while productivity is increased, the 
value metric is unlikely to be improved significantly. 
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Desirable is a shared wall actuator which can be configured to 
eject concurrently from a nozzle in every channel in the array to 
increase print head productivity and the value metric. 

Acoustic Operation 
The active ink channel, formed by the shared wall structure, 

communicates with a manifold providing a source of fluid to 
replenish that ejected from the nozzle.  It is desirable to have a 
manifold of adequate cross-section such that the pressure drop in 
the fluid supply is small.  This change in cross-section, between 
the active channel and the fluid manifold, causes partial reflection 
of pressure waves, providing an opportunity to cause droplet 
ejection by the accumulation of pressure pulses from a multiple of 
operations of the actuating element.  

Acoustic operation is initiated by activation of walls either 
side of the nominated active channel.  If the walls are deflected 
such that the volume of the chamber is increased the result is a 
reduction in fluid pressure, of magnitude P (arbitrary units).  This 
negative pressure is reflected at the manifold and a positive 
pressure wave (+P) propagates away from the manifold toward the 
inkjet nozzle.  After a period and when the pressure wave is close 
to the nozzle the channel walls are returned to their starting 
position.  The change in channel volume results in an increase of 
pressure of similar magnitude as the reflected wave, so that the 
total pressure at the nozzle at this instant is approximately 2P.  A 
further pressure increase, to a total magnitude of approximately 
3P, can be achieved if at the same time the wall pair makes a 
second movement further reducing the channel volume.  Of course 
if a pressure of magnitude P is required to initiate droplet ejection 
the device can be operated with a substantial reduction of the 
appled voltages. 

Figure 2 shows the fluid pressure profile measured at the 
nozzle in an arbitrary channel (channel 1) in the shared wall array.  
Label A identifies the pressure peak, of magnitude ~3P, which is 
adequate to eject the fluid from the nozzle.  The subsequent low 
pressure pulse initiates thinning of the sub-drop ligature in 
preparation for subsequent sub-drops or break-off of the last drop 
if the drop has developed to the desired volume.  Figure 2 shows 
the natural decay of the pressure wave however in operation these 
pressures are controlled by the introduction of further pressure 
pulses which are timed to enable active cancellation. 

 
Actuators configured in this manner are able to operate at 

high frequencies since the time of flight of the acoustic wave along 
the length of the channel is short.  In addition the flow of ink 

required for effective nozzle replenishment is free from 
impediment as a result of the proximity of the manifold and 
unrestricted channel cross-section.  These short cycle and recovery 
times enables ejection at frequencies in excess of 200 kHz (6pl 
drop) without risk of fluid starvation. 

The resulting maximum usable pixel frequency, with dead 
time between pixels, is close to 24 kHz but the 3-cycle mode 
erodes this frequency by a factor of 3 (e.g. a theoretical maximum 
of 8 kHz). 

Single Cycle Operation 
It is possible to generate pressure in the channels other than 

by movement of wall pairs as in the 3-cycle mode so that 
opportunity to increase print head productivity exists [2] [4].  
Consider the wall array shown in figure 3 in which the centre wall 
is displaced.  Oscillation of this wall stimulates longitudinal 
acoustic pressure waves in the fluid within each of the 
neighbouring channels.  These waves and the sub-drops ejected 
from neighbouring channels are subject to the phase shift 
described previously and which (at 200 kHz sub-drop frequency) 
results in a ~2.5µS delay between sub-drops in each phase.  
Usefully each print pixel, formed by a drop made up of a number 
of sub-drops, is addressed within a single cycle of operation. 

Figure 4 represents the pressure waves in these channels and 
the legends A and B show the pressure peaks corresponding with 
sub-drop ejection from nozzles communicating with channels 1 
and 2 respectively. 

In a first form of single cycle operation the channel pairs to 
print are mapped onto the input image (i.e. the location of selected 
neighbour channels pairs is allowed to float) using the full 
addressability of the channel array.  In a multi-pulse binary mode 
these pressure peaks would repeat producing multiple sub-drops 
until the main drop volume, require to fill the pixel, is satisfied.  
Note that drops must be ejected in pairs hence the image 
resolution, in the direction for the nozzle array, is low. 
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Figure 2.  Fluid pressure profile measured at the nozzle showing the 
result of longitudinal acoustic operation. 

Figure 4.  Fluid pressure profile measured at the nozzle showing the 
phase shifted longitudinal acoustic operation in adjacent channels. 
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Figure 3.  Cross section showing single wall actuation. 
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It is possible to eject drops from all nozzles, for example by 
moving every alternate wall, so that the increase in productivity 
can be realized across the full array of nozzles.  This is shown in 
the stroboscopic image shown in figure 5. 

 
 

To a first order this type of single cycle operation results in 
no pressure being transmitted to those channels which neighbour 
the active pair since those dividing walls remain stationary.  As a 
result it is possible to use drive voltages which generate pressures 
higher than that necessary to eject drops without risk of accidental 
drop ejection or ingestion of air.  Higher pressures produce drops 
which have larger volumes and higher velocities.  It has been 
possible to increase drop volume and substrate coverage so that 
further increases in linear speed have been demonstrated in excess 
of 2.5 m/s.  The increase in drop velocity to more than 10 m/s aids 
the control of drop flight and landing accuracy.  This represents a 
first mode of fast binary operation, referred to in this paper as 
Type 1.  Current performance of this technology, apparent 
resolution and linear speed, is illustrated in figure 6. 

 
The Type 2 configuration is a greyscale variant of Type 1.  In 

both if channel 1 ejects n sub-drops then channel 2 can only eject 
n-1, n or n+1 sub-drops which offers little flexibility in respect of 
greyscale functionality.  Instead greyscale levels are applied to the 
channel pairs each ejecting a maximum of n sub-drops.  Figure 6 
shows how the Type 2 configuration can deliver a higher image 
quality, as a result of the greyscale functionality.  Here the linear 
speed is shown lower than that of Type 1 as a result of the other 
imaging constraints, namely the selection of a different print 
strategy requiring a small sub-drop which prevents increases in 
drop volume being fully exploited. 

A further refinement has been developed in which previous 
limitations have been overcome.  The Type 3 embodiment 
employs a new design in which the wall displacements, and hence 
channel pressures, are more freely addressed.  This has enabled a 
channel operated in a greyscale, single cycle mode to have 
neighbours which can be operated in a similar manner without 
substantial interaction between.  With this technology we have 
shown it possible to configure a shared wall device, delivering an 
apparent resolution of ~1000 dpi, to operate at a linear speed three 
times faster than the original and without deterioration of the 
resulting image quality. 

The single cycle methods described deliver a print 
productivity which is increased by a factor of 3 compared to the 3-
cycle schemes described earlier in this paper.  Print heads carrying 
the new shared wall actuator operate at triple the frequency, 
delivering the same ink volume per drop and in the same print 
head package.  Consequently the value metric (pl.kHz/$) is more 
attractive against the original 3-cycle configuration, designs which 
ultilise only alternate nozzles and some other arrangement stacking 
multiple heads. 

Imaging for Applications 
There are several embodiments of the shared wall actuator 

and print system which can be operated in the single cycle mode 
described, or in modes which represent simple variants.  The 
operation of a single wall results in drop pairs being deposited in 
the substrate, this larger volume reduces the resolution in the 
direction of the nozzle array.  Of course the resolution in the print 
direction can be varied, but for purposes of this paper we will 
consider this to be fixed, for example at 360 dpi.  The resulting 
resolution of the printed image can be usefully expressed as an 
apparent resolution (AR) taking into account the scale of the pixel 
grid and the number of grey levels used to define the pixel tones 
[1].  Where a rectangular pixel grid is defined the pixel resolution 
is taken to be the average of the values in both axes, so: 

AR = Pixel Resolution  x  (No. grey levels)½ 

Most relevant to this paper is the Single cycle Type 3 device, 
which signifies the capability as an extension of similar devices 
configured to operate in the conventional 3-cycle manner.  This 
Type 3 device can yield a 3 fold increase in linear speed while 
maintaining an apparent resolution of circa 1000 dpi.  This 
capability will accelerate the acceptance of these technologies in 
applications such as labeling, high resolution marking and digital 
adoption of flexography. 

Other applications, which can be satisfied by lower 
resolutions, have adopted devices having a performance shown by 
the Single cycle Type 1 label in figure 6.  Coding applications 
requiring a binary image for the construction of barcodes or human 
readable text have previously adopted such shared wall 
technologies. 

Fluid Choice 
The increased print frequency and drop velocity made 

possible by this single cycle actuator technology imposes certain 
requirements on fluid selection; or preferably it demands that 
fluids are uniquely formulated for the specific printing application.   

Figure 5.  Single cycle, 2-phase operation of 42 pl drops (7 drops each at 
6pl) emerging from a 180 dpi nozzle and shared wall array. 
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Figure 6.  Print performance shown as an apparent resolution against 
linear speed in a single pass.  Note print heads having 360 npi capable 
of full coverage in a single pass at the stated speeds. 
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Droplet ejection characteristics are influenced; in the channel 
by the reaction of the fluid to acoustic stimulation; in the nozzle by 
the fluid being subjected to high shear stresses and in flight by 
visco-elastic and surface tension properties [3].  In all cases the 
demands imposed by single cycle operation are more severe.  Also 
the fluid, the materials it comprises, the preparation of constituents 
and the manner in which these are blended into the fluid 
formulation further influence the ejection performance. 

Reliable jetting at such frequencies is improved with fluids 
having a short relaxation time, i.e. lower than the jetting interval, 
so the fluid is fully relaxed and the stored energy dissipated before 
the next firing. 

Droplet formation can be compromised with an increase in 
drop velocity or firing frequency. Satellite drops (resulting from 
poor sub-drop merging) and volumes of fine mist (by the break-up 
of the drop ligatures) can be more pronounced.  It is the elastic 
component of the fluid that becomes more important and it is 
necessary to satisfy a certain elasticity at the print frequency for 
reliable satellite free drops.   

Effective fluid selection or development requires a detailed 
understanding of the relationship between the ejection systems and 
the rheology of the fluid.  Also, that key parameters can be easily 
measured in a representative manner or reliably interpreted from 
measurement data, and that the print system can be suitably 
configured. 

The same fluid measurement techniques can play an 
important role in the ongoing quality monitoring of the printing 
system.  Inks are easily screened for batch variation, signs of wear 
or degradation in use, contamination or premature ageing.  It is 
possible to use such technologies to contribute the quality and 
reliability of modern inkjet printing systems. 

This knowledge is used to develop new classes of fluids, 
including graphic inks, which have extended the performance of 
inkjet processes.  In addition new classes of printable fluids are 
formulated which, coupled with advanced piezoelectric actuator 
technologies, are able to deposit materials in the manner demanded 
by emerging applications.  Trends in fluid deposition (inkjet) mark 
the onset of a new class of additive fabrication processes which 
will employ the shared wall technology well into the next decade.   

Role of the Peripheral Systems 
Fundamental to acceptance of high speed single pass digital 

printing is the print reliability.  It is the single cycle actuator which 
is capable of ejecting the fluid at the high rates demanded in future 
applications and that device must control precisely the pressure 
impulses in the fluid, the conversion of these into droplets in flight 
and the rapid recovery of parameters such that subsequent drops 
may be ejected without error. 

However, high confidence in print performance and reliability 
require close control of thermal factors, nozzle meniscus pressures, 
and entrainment of bubbles, dissolved gasses, dirt and debris  It is 
the peripheral systems that are configured to aid management of 
these in high speed single cycle operation.  It is preferred to do 
much of this management in one system, rather than add to the 
complexity of the overall system, and the ink supply provides a 
number of opportunities.   

Fundamentally the ink system supplies fluid to the print head 
to be ejected from the actuator nozzle array.  This fluid is held in a 
remote reservoir under a vacuum which acts to remove excess 

dissolved gases.  A first conduit is provided which allows the fluid 
to communicate with the print head, the inlet manifold, to pass 
through the pressure chamber before returning through an outlet 
manifold and back through a second conduit to the remote 
reservoir.  In the first conduit a pump is provided to raise the 
pressure of the ink such that the fluidic impedance to flow is 
overcome.  The fluid passes through a filter, removing particulate 
debris; and a heater which is controlled such that the fluid arriving 
at the nozzle is closely controlled.  Pressure sensors at the fluid 
inlet and outlet to the print head monitor the pressure differential 
from which the fluid recirculation rate is derived and controlled.  
Also the sensor outputs are used to control the nozzle meniscus 
pressure. Having left the pressure channel the fluid starts on its 
recirculation path.  Between the outlet manifold which 
communicates with the actuator pressure chambers at the print 
head output pipe is a portion of the fluid flow which is in thermal 
contact to the drive electronics.  Excess heat, from power 
components and the driver ASIC driven at high frequency, is 
dumped into the fluid and is dissipated in the remainder of the 
circuit and remote reservoir. 

This peripheral system works to continually condition the 
fluid so that at the point of use, the nozzle, it is well controlled and 
able to support high speed, reliable operation. 

Conclusion 
New approaches to the configuration of shared wall actuators 

open opportunities for high productivity inkjet systems with 
improved value propositions.  Single cycle actuator configurations 
and print performance specifications can be readily adapted to 
match that demanded by printer systems. 

Knowledge is available to support the efficient development 
of complimentary fluids and peripherals systems which are 
essential to the system performance as a whole. 

Linear speed of the shared wall actuator is increased three 
times while the image quality is maintained and applications 
having lower image quality demands can benefit from further 
speed increases up to and exceeding 2.5 m/s.  
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