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Abstract 
Continuous Inkjet (CIJ) printing technology offers an ideal 

solution to meet the growing demands of the commercial digital 
printing market because of its advantages in speed, cost, and 
reliability. Here we present progress on the development of a new 
integrated CIJ printhead that can be batch manufactured using 
standard silicon microfabrication and 3D wafer assembly 
techniques. The printhead consists of a network of microfluidic 
channels for drop generation, drop selection, and guttering. The 
drop generator is a microelectromechanical system (MEMS) 
fabricated using CMOS-compatible processes. Typical operation 
of the drop generator involves breakup of a jet stream into small 
and large drops using thermal stimulation. The drops are then 
sorted using an air cross-flow, with the small nonprint drops sent 
to the gutter for recirculation and the large print drops sent to the 
print media. Laminating individually etched silicon wafers creates 
the channels for air cross-flow and guttering of the nonprint ink 
drops. Details on design, fabrication, and characterization of the 
integrated CIJ printhead are provided, and challenges and future 
directions are discussed. 

Introduction 
The trend for many graphics printing applications, such as 

direct mailings, transactional/promotional documents, catalogues, 
and magazines, is higher levels of customization and shorter 
production runs, which is an ideal fit for digital printing 
technologies. In order to be competitive with the analogue offset 
printing technology currently used to generate many of these 
materials, stringent requirements of high image quality and low 
print cost per page must be met. Continuous inkjet (CIJ) printing 
technology offers many of the advantages of the low cost and high 
throughput, however, suffers from disadvantages of lower image 
quality and limited ink-substrate latitude. Kodak’s next generation 
CIJ technology, KODAK Stream Technology [1], is aimed at 
overcoming these limitations and meeting the print speed, image 
quality, and cost requirements of the commercial printing market.  

A typical CIJ print engine includes a drop generator, a drop 
separator to sort print and nonprint drops, and a gutter or a catcher 
to collect and recirculate the nonprint drops. In conventional CIJ 
technology [2], ink drops are generated by mechanical stimulation 
of micrometer scale inkjets using a piezoelectric transducer, the 
drop selection achieved via inducing charge on the drops, which 
are then deflected using electrostatic force. Figure 1 shows a 
schematic of KODAK Stream Technology. Here, the drop 
generator is a silicon-based microelectromechanical system 
(MEMS), fabricated with integrated CMOS drivers and associated 
circuitry [3-5]. Typical operation of the printhead involves 
generation of small and large drops of fluid via jet breakup 

controlled by low-energy pulses applied periodically to a heater 
situated around each jet orifice [6]. The drops are then sorted using 
an air cross-flow, with the small nonprint drops sent to the gutter 
for recirculation, and the large print drops are sent to the print 
media [7]. The printhead is stationary in this system, with the print 
media moving underneath at speeds of hundreds of feet per 
minute. The main advantages of this technology are high printing 
speed, low cost per page, high image quality, ability to run 
relatively large printing jobs without requiring cleaning or other 
maintenance, and its potential for printing a wide range of 
materials. 

 

 

 

 

 

                    
 

 Figure 1. Schematic illustrating KODAK Stream Technology [1]. 

In this paper, we present a method for precision batch 
fabrication of compact, integrated CIJ printheads using silicon 
microfabrication and wafer bonding techniques [8]. This method is 
illustrated by building and testing of a miniaturized printhead 
based on the scheme shown in Figure 1, where all of the 
functionalities of a CIJ print engine are integrated into a 
monolithic microfluidic device. 

Design 
At the heart of the printhead is a silicon micromachined drop 

generator that creates continuous streams of ink drops via thermal 
stimulation. Figure 2 shows the cross-sectional view of a single 
nozzle. It is formed on a 300 μm thick silicon wafer coated with a 
dielectric film stack that acts as a nozzle membrane (2.1 μm thick) 
with a circular orifice (8.0 μm diameter). Ink is supplied to the 
orifice via an ink feed channel (30 μm × 120 μm) etched in the 
silicon wafer. Concentric resistive heater elements (inside diameter 
10 μm, outer diameter 14 μm, thickness 0.19 μm, calculated 
resistance 830 Ω) are embedded around each of the nozzle orifices 
for jet stimulation. A nozzle orifice of D = 8 μm diameter is 
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selected to give small and large drop volumes of 1.8 pL (1X) and 
7.2 pL (4X), respectively, for the typical value of λ/D = 4.5 for 1X 
drops, where λ is the wavelength of the jet corresponding to drop 
generation [6]. For a jet velocity of 20 m/s, a 1X drop generation 
rate of 555 kHz and 4X drop generation rate of 138 kHz 
(maximum printing frequency) were calculated. 
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Figure 2. Cross-sectional view of the drop generator showing critical 
dimensions. 

Figure 3 shows the design of the integrated printhead formed 
by an assembly of five individually etched silicon wafers in 
addition to the drop generator. The drop generator is located at the 
top and includes an array of nozzles at a pitch of 84.66 μm 
corresponding to 300 NPI. The ink drops travel from top to bottom 
through a narrow channel in the center. This channel hereafter is 
referred to as the central channel and has a width of about 300 μm, 
which is more than 10 times the diameter of the large drops. A 
uniform cross-flow of air from left to right deflects the nonprint 
drops toward a catcher on the right-hand side. This collected ink is 
then recycled back to the ink supply tank. The physical dimensions 
of the first prototype device shown in Figure 3 are 3.2 mm in 
thickness, 10 mm in width, and 45 mm long. The length of the 
various microchannels that run along the length of the device is 30 
mm. 

As shown in Figure 3a several rows of through-holes are 
provided in the drop generator wafer in addition to the ink feed 
channels to serve as fluidic ports for airflow and ink recirculation. 
The drop generator wafer is bonded to two 650 μm thick silicon 
wafers, Spacer1 and Spacer2 (Figure 3b). A channel created in the 
Spacer1 connecting to the central channel is intended to provide a 
vent or a collinear air supply with the drop streams. Other long 
rectangular slots in the spacer wafers provide fluidic 
interconnections to the subsequent wafers. This spacer wafer stack 
(Spacer1 and Spacer2) is 1350 μm thick and is designed to allow 
the jet to break up and form drops of desired size (1X and 4X) 
before the cross-flow of air deflects them. The next wafer, Air 
Channel (650 μm thick), forms the channels to provide cross 
airflow for droplet deflection. This wafer consists of partially and 
through-etched structures that form deflection channels of 400 μm 
or 650 μm in height. Another 650 μm silicon wafer, Spacer3, is 
used to increase the separation of the deflected drops before the 
nonprint (small or 1X) drops are caught in the gutter. This wafer 
consists of a notch near the catcher for guttering small drops. The 
final wafer in the stack, the Gutter wafer, is 300 μm thick and 
includes a thin vertical knife-edge (width 10 μm, height 150 μm) 
located at 130 μm from undeflected drop streams. The knife-edge 
is connected to a 150 μm channel for guttering ink and 

recirculating it back to the supply tank. A custom steel manifold 
designed for packaging the printhead is shown in Figure 3c and is 
used to make electrical and fluidic connections for 
characterization.  

The deflection of the traveling drops in a cross-flow of air 
was estimated using Newtonian particle mechanics and equations 
of the fluid drag on the spherical objects. For the prototype 
geometry, air velocities on the order of 40 m/s were calculated for 
sorting the print and nonprint drops, which corresponded to 
airflow rates of 30 L/min. 

Figure 3. Schematic design of the integrated CIJ printhead. (a) 3D view 
of a printhead showing wafer stack and fluidic ports; (b) detailed cross-
sectional view of the device showing microchannel network formed by 
laminated wafer stack; and (c) cross-section of the packaged device on 
a manifold. 

Fabrication 
The drop generator was fabricated with the standard surface 

micromachining processes and ink feed channels were etched in 
silicon by the deep anisotropic reactive ion etch (DRIE) process 
[9]. All other wafers (Spacer1-Gutter) were also etched using the 
same process. Channels were appropriately rounded in the mask 
design to avoid stress concentration and wafer breakage. Wafers 
Air Channel, Spacer 3, and Gutter were etched in two steps with 
an oxide hard mask and a soft photoresist mask to create the 
desired geometry. 
Figure 4. Illustration of batch fabrication process of the integrated 

printhead using wafer bonding. 

The wafers were aligned optically using photolithographically 
defined targets and bonded together using a thin (~ 0.3 μm) layer 
of adhesive [10]. See Figure 4. The bonding pressure used was 30 
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psi and the maximum temperature used for curing of the adhesive 
was below 200 °C. Thus, the wafer bonding process was CMOS-
compatible. After the bonding step, the wafer stack was cut into 
individual devices using a dicing saw. 
 

 
Figure 5. Integrated printhead after fabrication. (a) and (b) show the view 
of the complete device from two sides; (c) shows the device cross-
section; (d) shows the front face of the drop generator; and (e) shows 
the vertical knife edge catcher. 

Devices with different wafer stacks, namely, those including 
(i) Drop Generator, Spacer1 and Spacer2, (ii) Drop Generator, 
Spacer1, Spacer2, Air Channel, and Spacer3, and (iii) complete 
five wafer stack were built. Figure 5 shows images of a completed 
printhead after the dicing step. The front-view of the device 
showing the central channel opening in the Gutter wafer through 
which the print drops are ejected is shown in Figure 5a. This view 
also shows an opening in the wafer stack around the bond pads for 
electrical connections. Four rows of through-holes for various 
fluidic ports are visible in Figure 5b. The ink feed channels were 
etched only for the 48 nozzles in the middle for testing. A cross-
sectional view of the device is shown in Figure 5c and reveals a 
good alignment between wafers. Generally, alignment accuracy on 
the order of 10 μm was achieved between the nozzle array and 
knife-edge catcher. Figure 5d shows a frontside view of the 
nozzles with ring heaters, metal connections, and ink feed channels 
illuminated with backside lighting. Figure 5(e) shows the silicon 
knife-edge formed by the two-step DRIE process. 

Experimental 
The singulated printheads were attached to manifolds using 

an epoxy. Circular holes provided in wafer stack (Figure 5a) were 
used for alignment of the fluidic ports in the wafer stack with the 
manifold channels. Electrical connections were made to an 
external flexible circuit via wire-bonding. A pressurized vessel 
was used to supply fluid to the drop generator. The aqueous test 
fluid used in the experiments had a density, viscosity, and a 
surface tension of 1 g/mL, 0.92 cP, and 0.42 dynes/cm, 
respectively. Typically, the heat pulses are controlled by on-chip 

CMOS circuitry. However, as the initial prototype drop generator 
had no integrated CMOS circuitry, external signal generators were 
used. For initial testing, three banks of 16 heaters each connected 
in parallel configuration were driven with three separate 
synchronized signal generators. Air blowers were used for 
providing deflection air with in-line flow meters. The drop streams 
exiting the printhead were imaged using a CCD camera with a 
magnifying lens and LED strobe light. 

Results and Discussion 
First, it was ensured that 1X and 4X drops were formed 

before they reached the air deflection channel by looking at drops 
exiting from the stack (i). For drop velocities on the order of 20 
m/s and fundamental (1X) frequency 555 kHz, 1X and 4X drops 
were reliably formed by using customized waveforms for heater 
voltages of 3 to 4 V or energy per 1X drop on the order of 10 nJ. 
See Figure 6a. The complete stack (iii) was also tested without 
airflow to demonstrate drop ejection through the long and narrow 
central channel (Figure 6b). This experiment revealed a potential 
issue with the printhead due to excess drag on the small drops as 
they travelled through the central channel. This drag resulted in the 
coalescing of successive small drops. This can result in insufficient 
separation between print and nonprint drops for guttering. This 
problem will be addressed in future designs by increasing the 
width of the central channel. 
 

(a) (b)(a) (b)

 
Figure 6. (a) Front view showing large and small drops formed as they 
travel through the Spacer1-Spacer2 stack; (b) drops ejecting through 
complete device stack. 
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Figure 7. Example of small and large deflection using airflow in the 
integrated printhead (side view). 

Assembly (ii) was used to study drop deflection with cross 
airflow. As shown in Figure 7, even for small airflows, both the 
small and large drops were deflected when airflow was turned on. 
The small drops were deflected more compared to the large drops, 
as expected. Figure 8 shows an illustration of integrated deflection 
and guttering with the complete printhead for two different 
combinations of 1X and 4X drops. When airflow was turned on, 
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the nonprint drops were deflected into the gutter and print drops 
were ejected towards media. The airflow conditions for this 
experiment were positive airflow (left of main channel) of 16 
L/min, negative airflow (right of air channel) of 12 L/min and 
gutter channels of 6 L/min. 
 

#12-1X and 
#6-4X
Air OFF

#12-1X and 
#6-4X
Air ON

#4-1X and 
#8-4X
Air OFF

#4-1X and 
#8-4X
Air ON

#12-1X and 
#6-4X
Air OFF

#12-1X and 
#6-4X
Air ON

#4-1X and 
#8-4X
Air OFF

#4-1X and 
#8-4X
Air ON  

Figure 7. Illustration of deflection and guttering using airflow in the 
integrated printhead (side view). 

Note that in Figure 7 the print drops look “fuzzy” as they exit 
the printhead. This was caused by positional variations in the 
successive drops resulting from turbulence at high airflow rates. 
This is clear from the noticeable angular deflection of the print 
drops from the undeflected position. These higher airflow rates 
were required because of the compact design of the prototype. 
Further, there was a tendency of additional merging of successive 
small drops with airflow as some air was entrained from the 
bottom opening in the central channel, causing adverse drag on the 
drops. These issues can be addressed by redesigning the printhead 
to increase drop deflection by optimizing the deflection channel 
height, adding another spacer wafer before the gutter, and 
increasing the height of the positive deflection channel. Another 
issue with the present design was related to formation of an ink 
puddle at the bottom of the gutter surface, as seen in Figure 7. The 
current design required very accurate trajectories of the nonprint 
drops to be effectively caught in the knife-edge gutter. Small 
deviations in the drop trajectories caused the drops to land on an 
undesired surface and then created an ink film on the central 
channel wall and a puddle on the gutter surface. This also caused 
misting as the drops hit the ink puddle. In future designs this will 
be addressed by a better catcher design that allows for deviations 
in small drop trajectories and schemes to siphon any ink that may 
create a puddle. 

Conclusions 
In summary, a micromachined, compact, integrated printhead 

for continuous inkjet printing was proposed. This method offers 
advantages of batch-fabrication, precision alignment, cleanliness, 
and potential of adding multiple aligned rows of nozzles in a single 
printhead. Prototypes were fabricated and were used to 
demonstrate successful generation of ink drops, selection of print 
and nonprint drops, and guttering of the nonprint drops. The 
important issues with the printhead architecture were identified 
and solutions were suggested. Although the device was 
demonstrated for using air deflection, this concept can be applied 

for any continuous inkjet printing scheme including electrostatic 
deflection and thermal deflection [2-4].  
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