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Abstract 
We studied the instability of a liquid jet by confocal 

microscopy, a non-invasive three-dimensional imaging technique. 
The amplitude of jet oscillation can be measured from its early 
stage to the vicinity of the jet breakup with a radial resolution of 
80 nm. A continuous jet with a diameter of 100 μm and mean 
velocity of 5.6 ms–1 was perturbed at a frequency of 11.8 kHz. The 
growth rate of the sinusoidal instability was used to determine the 
dynamic surface tension of water and of surfactant solutions at a 
surface age of ≤ 1 ms,  using an established linear, axisymmetric, 
constant property model. A commercial aqueous non-ionic Gemini 
surfactant Surfynol 465 reduced the dynamic surface tension more 
efficiently than an anionic surfactant sodium dodecyl sulphate 
(SDS). The effect of surfactant on the jet breakup length has also 
been studied. We applied the confocal imaging system to study the 
temporal evolution of a ligament which starts from a concave neck 
and eventually develops into a satellite drop. The pinch-off process 
has been studied in detail. It is found that the final stages of 
ligament rupture are the same for water and surfactant solutions. 
The time taken for the satellite drop to be engulfed by the 
following drop depends on the surfactant concentration. 

Introduction  
Surfactants (a contraction of surface active agents) can reduce 

the surface tension of liquids even at low bulk concentrations. 
They are widely used in many industrial, agricultural and 
biological processes. For example, surfactants are commonly 
added to inkjet inks as wetting, emulsifying and dispersing agents. 
By lowering the surface tension of inks, surfactants can improve 
the wettability or printability of the inks. The reduction of the 
surface tension by surfactant is a dynamic process where 
molecules must first diffuse to the surface from the bulk and then 
orient themselves at the interface. Many experimental techniques 
have been developed over the past decades to measure dynamic 
surface tension (DST) and study the adsorption mechanism, 
including the maximum-bubble-pressure, oscillating-jet, 
overflowing-cylinder and drop shape analysis methods [1]. 
However these techniques can only provide us DST with surface 
age older than 1 ms. In fact, efficient surfactants can lower the 
surface tension to its equilibrium value within 1 ms at 
concentrations of <1%. Take an anionic surfactant sodium dodecyl 
sulphate (SDS) as an example. It has a critical micelle 
concentration (cmc) of 8 mM in water, i.e. 0.23% by wt, and the 
equilibrium value of the surface excess at this concentration is Γcmc 
≈ 4 × 10–6 mol m-2. Given that SDS adsorption is diffusion 
controlled, the diffusion time τd is defined as the mean time taken 
by a surfactant molecule to diffuse a distance given by the 
depletion length Γ/c, where c is the bulk surfactant concentration. 
[2]:  
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The diffusion coefficient of SDS is ~ 5 × 10-10 m2 s-1 which 
gives τd ~ 0.25 ms at its cmc. The time taken for a freshly formed 
surface to reach equilibrium is ~ 5τd ≈ 1 ms. Hence to measure 
the DST in sub-millisecond or shorter timescale will be of great 
interest for scientific research and industrial application.  

In this paper, we present our experimental study on the 
instability of a continuous liquid jet. The growth rate of the liquid 
jet in the presence of two types of surfactants has been measured 
by confocal imaging. The DST of the liquid at a surface age of ≤ 1 
ms can be determined via growth rate measurement. The surfactant 
effect on the jet breakup and satellite drop formation has also been 
studied in detail.  

Experiments 
The experimental apparatus is shown in Figure 1: the details 

will be presented elsewhere [3]. The pressurised liquid is guided 
from a reservoir into a dispenser head. A pressure control unit and 
a liquid pump are adjusted to keep the reservoir liquid volume 
constant so as to guarantee a constant liquid flow rate. A laminar 
jet emerges from the dispenser head through a funnel-shaped glass 
nozzle with an exit diameter of 100 μm into free air at a room 
temperature of 22 °C. The jet is mounted in a three-dimensional 
motorised translation stage with an actuator travel range of 12.5 
mm and an accuracy of 0.2 μm. A TTL signal generator is applied 
to the valve control. The flow rate for the partially closed micro-
valve inside the disperser head is about 98% of that for an open 
valve. The amplitude of the applied periodic perturbation on the jet 
is therefore small.  

 
Figure 1. Experimental setup. SLD: superluminescent diode; BS: 
beamsplitter; PMT: photomultiplier tube; Amp: amplifier. S/I: signal-in; S/O: 
signal-out; T/I: trigger-in; G/O: gate-out. 

We used UHQ water from Millipore water purification 
system (Millipore Corporation, USA) as a calibration fluid in the 
jet, assuming it to have a constant surface tension. Two types of 
surfactants were chosen. A simple single-chain anionic surfactant 
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(SDS, Sigma-Aldrich, 99+%) with molecular weight Mw of 288.38 
g mol-1 was recrystallized three times from 99.9% Ethanol 
(Fisher). A nonionic gemini surfactant Surfynol 465 (ethoxylated 
2,4,7,9-tetramethyl-5-decyne-4,7-diol containing 10 mol of 
ethylene oxide per molecule, Air Products), comprises  two 
hydrophilic heads connected by a molecular segment and two 
hydro-phobic tails with Mw of 666 g mol–1. Surfynol 465 has a 
hydrophilic-lipophilic balance value of 13 which makes it water 
soluble up to concentrations greater than 1.0%. In order to 
minimize the formation of bubbles in the surfactant solution, 
which may cause uneven wetting of the nozzle plate and drop 
misdirection, an inline degasser and vacuum pump are used in the 
input line of the dispenser. Aqueous Surfynol 465 foams much less 
than SDS.   

For visualization, confocal and conventional microscopic 
imaging systems have been built which share the same objective 
and tube lenses with a flip mirror to switch between the two 
imaging modes. A super-luminescent diode light with the spectrum 
peak at wavelength of 860 nm is used as a light source for confocal 
system. The output from a single mode fiber and a fiber collimator 
is focused onto the jet through an infinity-corrected objective lens 
with a numerical aperture (NA) of 0.3. The backscattered light 
from the sample is collected by the same objective and then 
focused onto a 40 μm diameter pinhole through a tube lens with a 
focal length of 20 cm. The pinhole is conjugate to the focus of the 
objective lens so that the signals that arise from the focus pass 
through the pinhole and signals from out-of-focus planes are 
largely blocked. This ensures that the information is obtained 
mainly from a specific point of the sample and gives the imaging 
system an optical sectioning property. The signal is first detected 
in photons by a photomultiplier tube and then electronically 
amplified and sent to a gate generator (Stanford SR250), which is 
triggered by the signal generator that applies the perturbation to 
the nozzle. The gate and signal output from the gate generator 
show the exact timing relation of the sample gate with respect to 
the signal which are both send to an oscilloscope (LeCroy 9304A 
200MHz) for data process and analysis.  

For the conventional microscopic imaging, an illuminator is 
used as light source with a spot size of ~5 mm diameter on the jet. 
A CCD camera with a minimum exposure time of 1 μs records the 
bright field image of the jet with single shot. By fine adjustment of 
the frequency of the signal generator close to a multiple of the 
CCD frame rate, we could obtain a pseudo-sequence of images 
showing the evolution of drop formation.  

The equilibrium surface tension σeq of the samples was 
measured by a pendant drop analysis tensiometer (FTÅ 200, First 
Ten Ångstroms, USA). We showed the variation of σeq with 
surfactant concentration c in Figure 2. The cmc of SDS and 
Surfynol 465 is 8 mM (0.23% by wt) and 13 mM (0.9% by wt), 
respectively. The surface excess Γeq can be determined below the 
cmc from the slope of σ vs lnc according to the Gibbs equation of 
Γeq = –1/(nRT)⋅dσ/d(lnc), where n = 1 for non-ionic surfactants 
and n = 2 for ionic surfactants, R is the gas constant and T is the 
absolute temperature. SDS has a surface excess of 3.9 × 10–6 mol 
m–2 near its cmc which is higher than that of Surfynol 465, 2.0 × 
10–6 mol m–2, reflecting the presence of two bulky hydrophobic 
groups in Surfynol. Surfynol 465 is, however, both more effective 
and more efficient than SDS as a surfactant.  

 
Figure 2. Plot of σeq vs lnc for SDS and Surfynol 465 samples. 

The unperturbed liquid jet with a mean velocity of 5.6 m s–1 

has a jet diameter of 103 μm, which is slightly larger than that the 
diameter of the nozzle due to wetting of the nozzle face. Figure 3 
shows the response of the detector in the confocal set up when the 
front surface of the jet front is scanned through the focus of the 
laser beam.  Zo is the translation of the jet along the optical axis of 
the laser beam and z is the distance of the laser beam from the 
nozzle plate along the axis of the jet. The full-width at half-
maximum of the optical axial response for the front surface is 13.1 
μm. The maximum intensity corresponds to the location of the 
surface of the jet at the focus of the laser beam; the jet surface can 
be determined with an accuracy of ~ 1 μm. To achieve a higher 
resolution in surface profiling, the quasi-linear slope of the 
confocal axial response curve from Zo = -7.8 μm to -3.7 μm can be 
used. Assuming the surface height variation of the sample is within 
this dynamic range of ~ 4.1 μm, the surface displacement ΔD is 
proportional to the change in the detected signal intensity d ΔI: ΔD 
= ΔI/S, where S is the gradient of the quasi-linear slope inside the 
confocal axial response curve. For our system, S = 50.5 mV/μm. 
The resolution is limited mainly by the mechanical stability, 
fluctuation of light source and electronic noise. The intensity 
fluctuation at a steady jet surface is <4 mV, gives a depth 
discrimination better than 80 nm. This enables us to study jet 
instability with much higher resolution than by conventional 
microscopy.   

Figure 4 showed conventional images of the water jet with a 
perturbation frequency f of 11.8 kHz and wavelength λ of 480 μm. 
According to Rayleigh’s linear stability analysis, the radial 
displacement δ of a cylindrical jet of incompressible inviscid 
liquid that is subject to infinitesimal axisymmetric oscillations of 
the surface grows exponentially for 2πa/λ < 1, where a is the 
radius of the unperturbed jet and λ is the jet wavelength. The 
displacement has the form of  

)(
0

0),( tuzikt eetz −= αδδ                                           (2) 
where δ0 is the initial amplitude of the disturbance, u0 is the 

jet velocity which, obeys u0 = λf, α is the growth rate and the 
wave number k = 2π/λ. Weber deduced a dispersion relation 
between α and k for a Newtonian fluid [4]: 

80 Society for Imaging Science and Technology



 

),1(
2

)(I
)(I

21
)(I
)(I

2

)(I
)(I

2

22
3

22

22

2

1

0
22

2

1

02

1

02

ak
a
ak

kl
k

la
la

la
kl

l
ka
ka

kak

ka
kaka

−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−

−

+

ρ
σ

αν

α

         (3) 

where l2 = k2+α/ν, ν = μ/ρ, ρ, μ and σ denote the fluid 
density, viscosity and surface tension, respectively, and I0 and I1 
are hyperbolic Bessel functions of the first kind of order 0 and 1, 
respectively. a is the initial jet radius.   

 
Figure 3. Confocal response of the jet front surface (solid) and linear fitting 
(dotted) of the quasi-linear slope of the response; 1 mm from nozzle plate.  

 
Figure 4. (a) and (b) successive frozen images of perturbed liquid jet with an 
exposure time of  1 μs and an interval of 42 μs. Modulation frequency 11.8 
kHz. Wavelength 480 µm. The sketched lens and beams in (a) and (b) 
focusing on jet swell and neck illustrate how the jet surface is located by 
confocal microscopy. 

By confocal imaging, we are able to locate the jet surface and 
measure the oscillation amplitude from a very early stage. Figure 5 
plots the amplitude of oscillation determined from the difference in 
positions of the swell and neck against the jet axial position, z, for 
water, 5 mM SDS (0.14% wt), 8 mM SDS (0.23% wt), 1.5 mM 
Surfynol (0.1% wt) and 11.3 mM Surfynol 465 (0.75% wt). The 
data are plotted semi-logarithmically and linearly fitted over an 
axial spans of ~ 4λ ≈ 2 mm, or in term of time ~ 0.4 ms, with αz/ 
u0, where u0 = λf = 5.664 m/s is used for f = 11.8 kHz and λ = 
480 μm. Here a uniform velocity profile of the jet is assumed after 

z > 3 mm. In addition, for surfactant jets the DST is actually an 
average value over the time range of 0.4 ms. The slope gives the 
growth rate αwater = 7660 s-1, α5mMSDS = 7210 s-1, 
α8mMSDS = 6540 s-1, α1.5mMSurfynol465 = 6700 s-1, and  
α11.3mMSurfynol465 = 5040 s-1, for ka = 0.674. The typical 
error for the linear fitting is ~ 100 s-1. Hence dynamic surface 
tension can be deduced from the measured growth rate by equation 
3. Jet diameter of 103.0 μm is fitted to get water surface tension of 
72.4 mN/m which is used as a calibration value and the physical 
properties of water ρ = 998 kg/m3, μ = 0.955 × 10-3 Pas were used 
for the temperature of 22 °C for all samples. The measured 
dynamic surface tension of SDS and Surfynol 465 is listed in 
Table 1 below along with the equilibrium values.  

 
Figure 5. Growth rate measurement of water, SDS and Surfynol 465 solution 
jets. 

Table 1: DST and σeq of SDS and Surfynol 465 

Sample Surface 
age (ms) 

DST (mN/m) σeq (mN/m)

5 mM SDS 0.7 ± 0.2 64.3 ± 2.0 47.7 

8 mM SDS 0.9 ± 0.2 53.3 ± 1.8 38.5 

1.5 mM Surfynol 465 0.7 ± 0.2 55.8 ± 1.8 40.5 

11.3 mM Surfynol 465 1.1 ± 0.2 32.2 ± 1.4 30.6 

A typical diffusion coefficient for a nonionic surfactant of the 
size of Surfynol 465 would be 3 × 10–10 m2 s–1. Equation 1 then 
gives a diffusion time of 1.5 ms for the 1.5 mM solution (using a 
value of Γeq= 1.4 × 10–6 mol m–2 from Fig. 2 and the Gibbs 
equation) and 50 μs for the 11.3 mM solution.  We would 
therefore expect the high concentration solution to have very 
nearly reached equilibrium but the low concentration solution to 
be only partially equilibrated, which is what we observe. For SDS, 
τd ~0.5 and 0.2 ms at 5 mM and 8 mM, respectively, which are 
close enough to the surface age that a detailed mass transport 
model is required to establish whether or not adsorption is 
diffusion-controlled.  

Surfactants lower the dynamic surface tension and 
consequently reduce the growth rate of the jet instability. As a 
result the jet breakup length increases. Figure 6 shows how the jet 
breakup length dependence on the jet velocity for the four 
surfactant solutions. Despite the differences in dynamic surface 
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tension, the final stages of ligament rupture are very similar for 
water and surfactant solutions. 

Figure 7 shows the time delay between a swell and the 
following neck at fixed z, measured by confocal imaging. The 
insets show the temporal variation in the detected signal near the 
pinch-off point when the laser is focused on the neck.  For the 
early stage of jet instability, the delay between swell and neck 
remains nearly constant, as would be expected for a symmetric 
perturbation. Downstream of z ≈ 4.2 mm in the water jet, the 
reflected ‘pulse’ becomes asymmetric. At z = 4.44 mm, the pulse 
broadens owing to the formation of a ligament between two swells 
with a sharp peak indicating a pinch at the end of the ligament near 
the fore swell The further development of the ligament involves 
the movement of the first pinching point towards the fore swell 
and appearance of another pinch at the other end of the ligament at 
z = 4.57 mm. The time scale t0 measured from final stage of 
perturbation growth with appearance of first pinch peak at z = 4.44 
mm to eventually jet breakup at z = 4.70 mm is ~ 46 μs. This 
agrees very well with the time scale given by the balance of 
surface tension and inertia at low viscosities [5], i.e. t0 = 
(ρa3/σ)1/2 = 43 μs. The temporal profile of 11.3 mM Surfynol 
solution jet is rather similar with the pure water one, but with 
larger t0 ≈ 70 μs due to its lower surface tension value. 

 
Figure 6. Breakup length vs jet velocity for different surfactant solutions. 

The time taken for the satellite drop to be engulfed by the 
following drop depends on the surfactant concentration, shown in 
figure 8. The higher the surfactant concentration and the lower the 
dynamic surface tension, the longer it takes for the satellite to 
merge the following main drop.  This result may be a consequence 
of momentum conservation. The momentum carried by the main 
drop and the satellite should equal the momentum flux of the 
unperturbed jet minus a surface tension contribution, integrated 
over one period. It has the form of [5]  
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where  um and us are main drop and satellite drop velocities, 
rm and rs are the corresponding radius respectively. In our 
experimental condition, um ≈ u0, where u0 >> σ/(ρau0). For the 
same main drop velocity, the lower the surface tension, the higher 
system momentum and the higher is the satellite velocity, us.  
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Figure 7. The time delay along the jet axial measured between the swell and 
the following neck at the same axial position of the water (■) and 11.3 mM 
Surfynol 465 (□) jet. The corresponding ligament temporal profiles are shown. 

 
Figure 8. The time taken for the satellite drop to be engulfed by the following drop 
depends on the surfactant concentration. 
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