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Abstract 
A novel method that makes possible the measurement of an 

electrostatic latent image on a photoconductor is proposed. An 
electrostatic latent image is formed by electron charging and by 
laser exposing of a photoconductor within a vacuum chamber. The 
electrostatic latent image is measured by detecting secondary 
electrons generated by the scanning of an electron beam probe. 
When a primary electron beam hits the photoconductor, secondary 
electrons are generated. Secondary electrons generated in a 
charged area travel to an electron detector. In contrast, secondary 
electrons generated in an exposed area are pulled back to the 
photoconductor, thereby decreasing the number of secondary 
electrons that reach the detector. The exposed and charged areas 
are determined in this way. The significant feature of this method 
is that the means of charging, exposing, and detecting are all 
incorporated in the same system, making real-time measurement 
possible. This method has good performance with high-resolution 
measurement on the order of microns.  

Introduction 
Recently, the demand for high-quality, color output from 

digital copying machines and laser printers has risen significantly 
prompting the development of achieving 1-dot reproducibility and 
stability. In the electrophotographic process, the electrostatic latent 
image formed on the photoconductor directly affects the behavior 
of toner particles. Under such circumstances, it is necessary to 
measure the electrostatic latent image with high-resolution on the 
order of microns, which is sufficiently smaller than a spot size of a 
laser beam. However, a spatial resolution of a commercial 
electrostatic voltmeter is on the order of millimeters at best. 

Some methods that use a head sensor, such as a cantilever, 
and detect the electrostatic attractive force and the dielectric 
current have been reported [1]. However, it is difficult to set them 
up in the allowed time because the head sensor must be moved 
closer to the sample. In addition, it is necessary to solve problems 
such as natural discharge, absorption, and absolute distance 
measurement.  

 On the other hand, voltage contrast observations for 
conductors or insulators using a scanning electron beam have been 
reported [2]. However, since the resistance of an organic 
photoconductor (OPC) used for electrophotography is not infinity, 
dark decay occurs, and the electric charge decreases with time. 
The time of which the photoconductor can maintain an electric 
charge is several tens of seconds at most. Measurements must be 
taken within a short time after the formation of an electrostatic 
latent image.  

This paper has reported a new method for measuring the 
electrostatic latent image on a photoconductor with high-resolution 
measurement on the order of microns [3].  

Measurement Principle 
The measurement principle of the proposed method is shown 

in Fig. 1. When a charged photoconductor is exposed to light, 
electron-hole pairs are generated at the charge generation layer 
(CGL). Holes move through the charge transport layer (CTL), 
combine with electrons on the photoconductor surface, and 
disappear. This gives rise to a charge distribution on the 
photoconductor surface, resulting in the formation of an 
electrostatic latent image. Figure 1 shows the model in a state in 
which the charge distribution forms on the photoconductor. 

When a primary electron beam hits the photoconductor, 
secondary electrons are generated. Many secondary electrons 
generated in a charged area travel to an electron detector by an 
accelerating electric field. 

In contrast, secondary electrons generated in an exposed area 
are pulled back to the photoconductor, thereby decreasing the 
number of secondary electrons that reach the detector because the 
decelerating electric field exists above the exposed area, as shown 
in Fig. 2. The exposed and charged areas are determined in this 
way. Namely, the electrostatic latent image is measured by 
detecting secondary electrons generated by the scanning of an 
electron beam probe. 

As described above, however, the photoconductor exhibits 
dark decay, requiring measurements to be performed within a short 
time following the formation of the electrostatic latent image.  

In response to this need, a developed measuring system is 
equipped with a means of forming a latent image and enables the 
observation of the latent image immediately after its formation. 
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Figure 1. Measurement principle 
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Figure 2. Calculated contour map of electric potential by surface-charge 
distribution: Charging potential is –800 V. 

Electrostatic Latent Image Measuring System 
The basic layout of the developed measuring system is shown 

in Fig. 3. The vacuum chamber includes an electron optical system 
for guiding the electrons emitted from an electron gun to the 
sample, a means of forming a latent image to reproduce actual 
electrophotographic conditions, a means of detection, a means of 
erasing, and a sample holder. 

The main specifications of the electron-beam control device 
are listed in Table 1. Given the importance of allocating 
workspace for an exposure optical system within the vacuum 
chamber, an electron optical system with a long working distance 
was used. The working distance of an electron optics system is 
possible up to a maximum of 100 mm.  

Moreover, when measurement switches from the charging 
state to the observation state, the probe current must be changed 
appropriately so as not to disrupt the latent image. This system has 
been configured to enable immediate adjustment of the probe 
current by separately controlling the applied voltage of the 
electron lens.  
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Figure 3. Electrostatic Latent Image Measuring System 

Table 1 Electron beam control device 
Electron gun Thermal field-emission  
Accelerating voltage ~5 kV 
Working distance ~100 mm  
Measured range ~4 mm 
Vacuum chamber size Φ300 mm 
Beam current ~2 nA 

 
 
The means of detection is configured to efficiently guide the 

secondary electrons to a scintillator. The electrons that reach the 
scintillator are converted to an electric signal after current 
amplification by a photo-electron multiplier tube (PMT). The 
electric signal is then converted to a contrast image in which the 
charged area is bright and the exposed area is dark [4]. 

The sample holder supports photoconductors having a flat or 
curved shape and features automatic positioning adjustment. 
Residual charge is erased by incorporating a light emitting diode 
(LED) for irradiating the entire surface of the sample. 

Latent Image Formation Method 

Charging method 
Charging devices used in standard electrophotography make 

use of corona discharge in which air is used as a medium. Since 
this method cannot be used in a vacuum, a charging system based 
on electron-beam irradiation is adopted. 

Secondary electrons are emitted when irradiating a dielectric 
targeted for measurement. By denoting emitted electrons as Ie and 
incident electrons as Ip, secondary-electron emission coefficient δ 
can be defined by  

Ip
Ie=δ  .                                                                           (1) 

Figure 4 shows general secondary-electron emission 
characteristics [5]. At accelerating voltage Vδ=1 corresponding to δ 
= 1, no charging occurs and the system maintains a balanced state. 
At accelerating voltage Vacc with δ < 1, negative charging occurs. 
Conversely, at Vacc with δ > 1, positive charging occurs. 
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Figure 4. Secondary-electron emission characteristics 
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The general approach to observing a dielectric with a 
scanning electron microscope (SEM) is to perform under Vδ=1. 
Setting under any other conditions makes detailed observation 
difficult since the sample will charge up, disturbing the original 
image.  

This system purposely makes use of this charge-up 
phenomenon, which should be generally avoided. By intentionally 
setting the accelerating voltage greater than Vδ=1, the electrons 
accumulate in the photoconductor causing the sample to charge up. 
As a result, the photoconductor can be negatively and uniformly 
charged. 

Exposing method 
As illustrated in Fig. 3, the light flux emitted from the laser 

diode (LD) is converted into a parallel laser beam by a collimator 
lens. Next, the laser beam passes through an aperture, a focusing 
lens and a reflecting mirror, and condenses on a photoconductor as 
a laser beam spot. 

Interference between the electron-beam path and optical 
components is prevented by having the light beam condense at an 
incident angle of about 45 degrees relative to the sample.  

The exposure optical system can form a beam profile at a 
desired beam spot diameter on the photoconductor within the 
vacuum chamber. The desired beam spot diameter can be 
determined by adjusting aperture size. 

The laser power and pulse timing can be appropriately set by 
controlling the LD driver externally with a computer. 

Control of charging potential 
We performed an experiment to see whether a charging 

system by electron-beam irradiation could obtain a desired 
negative charging potential of several hundred to 1 kV, and we 
investigated a physical model for this system and the control of 
charging potential.  

Conditions for electron-beam irradiation were an accelerating 
voltage of – 2 kV and a broad area of about 4-mm square so as to 
support a commercial electrostatic voltmeter (Trek Model 344).  
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Figure 5. Charging characteristics of OPC irradiated by electron beam with 
Vacc = –2 kV 

As shown in Fig. 5, the charging potential Vs(t)  rises rapidly 
just after the commencement of electron-beam irradiation but 
exhibits a slower rate of change over time, eventually becoming 
saturated. 

From the charging model [6], Vs(t) can be expressed as   

{ })exp(1)( tVdtVs α−−= .                                     (2) 
The measurement results of Fig. 7 overlap the approximate 

curve of Eq. (2). In this equation, Vd denotes the saturated 
charging potential. 

As shown in Fig. 6, the accelerating voltage and saturated 
charging potential have a linear relationship.  

Thus, from Fig. 6, Vd is approximately represented by 

 1=−= δVVaccVd .                                                   (3) 

Vδ=1 can be measured beforehand. The desired charging 
potential can therefore be obtained by appropriately setting the 
accelerating voltage and irradiation time. 
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Figure 6. Relationship between accelerating voltage and saturated charging  
potential 

Experimental Results 
Electrostatic latent image measurements are shown in Figs. 7 

and 8. The sample was an OPC with a film thickness of 30 μm. 
The exposure light source was an LD with a wavelength of 655 
nm. The image observation area was uniform at 0.27 mm.  

Figure 7(a) shows the measurement results of the electrostatic 
latent image for static exposure with an elliptical beam of 
dimensions 28 μm horizontal and 43 μm vertical (H28 x V43 μm) 
and with an exposure energy density of 4 mJ/m2. The charged area 
was detected as bright and the exposed area as dark with an 
elliptical shape. These results demonstrate that the proposed 
method can visualize an electrostatic latent image. 

Next, Fig. 7(b) shows the measurement results for a larger 
beam of H57 x V83 μm and with the same energy density as (a). 
These results show that differences in electrostatic latent images 
due to different beam spot sizes can be clearly identified. 
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(a)H28 x V43 μm, 4 mJ/m2  
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Figure 7.  Measurements of electrostatic latent image of one beam spot: 
exposure conditions are (a)H28 x V43 μm, 4 mJ/m2 ,(b)H57 x V83 μm,4 
mJ/m2 and (c)H57 x V83 μm, 4.8 mJ/m2. 
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Figure 8. Measurement results of horizontal latent image diameter with H57 x 
V83 μm 

 Finally, Fig. 7(c) shows the measurement results for 
exposure by the same beam spot size as (b) but with an exposure 
energy density about 20% larger at 4.8 mJ/m2. Despite the fact that 
the beam spot size was fixed, it can be seen that the diameter of 
the resulting latent image had changed. We can see that exposure 
energy density has affected the latent-image diameter. 

 Figure 8 shows the results of measuring the horizontal latent 
image diameter while varying exposure energy but keeping beam 
spot size fixed at H57 x V83 μm. These results clearly show that 
the horizontal latent-image diameter becomes larger as exposure 
energy increases. By evaluation of reproducibility, the 
measurement accuracy was 1.5 μm or better with respect to the 
latent-image diameter. This system has sufficiently small 
measurement sensitivity compared to the beam spot size. 

Conclusion 
A novel method has been proposed that enables the 

measurement of an electrostatic latent image on a photoconductor. 
The significant feature of this method is that the means of 
charging, exposing, and detecting are all incorporated in the same 
system. 

The proposed charging means by electron beam irradiation 
enables charging potential to be set as desired within a vacuum. 
The electrostatic latent image is measured by detecting secondary 
electrons generated by the scanning of an electron beam probe. 

 This system has good performance with a measurement 
accuracy of 1.5 μm or better with respect to the latent-image 
diameter. The system can be used to analyze the basic 
characteristics of an electrostatic latent image formed on a 
photoconductor. 
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