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Abstract

The production of ink-jet inks is a two stage process. First,
the pigment is dispersed in an appropriate mobile phase using a
mechanical stirrer. This ensures that any lumps of pigment powder
are dispersed. This “pre-mix” sample is then milled using a ball-
mill in order to reduce the particle size and cause the break-up of
any strongly bound aggregates.

Dilute polymer solutions at flow rates corresponding to a
transition from dripping to jetting. Thermal inkjet process can be
analyzed by considering dynamics of capillary flow, capillary
thinning and break-up process in low viscous and low viscosity
elastic fluids such as dilute polymer solutions. The relative
importance of three time scales inertial, viscous and elastic
processes and length scales, initial sample size and the total stretch
imposed on the sample govern stability of inkjets. Viscosity,
relaxation modulus and surface tension are used to analyze
stability of inkjet flows of viscous and viscoelasic fluids from
glycol, polyethylene oxide, carbon black and borate esters.

Introduction

Inkjet printing is increasingly considered a cost-effective

and flexible method for the structuring of functional materials
such as conducting polymers for applications in polymer light-
emitting diodes, polymer electronics

and three-dimensional printing. Rapid prototyping capability,
high precision dispensing, non-contact multi-material deposition,
low material waste and 3D patterning are the key advantages of
inkjet technology. In the field of micro-electro-mechanical systems
(MEMS), the negative epoxy based resist SU-8 has contributed
largely to the advances in high aspect ratio microdevices.
Moreover, the material itself has very interesting properties, e. g.
chemical inertness and elasticity module for mechanical
applications in polymer MEMS. In addition, its transparency
makes it an interesting candidate for microoptical applications.

In inkjet printers, ink is ejected from a nozzle by applying a
pulse of pressure to the fluid ink in the supply tube, upstream of
that nozzle. There are two common methods of creating this
pressure pulse: thermal bubble and piezoelectric. In the thermal
bubble technique, ink channels are formed on the surface of a
planar substrate using a photoimageable polymer. A small heater is
formed using a thin film resistive metallic layer less than 1
micrometer thick in the wall of the ink channel leading to each
nozzle. Typically, such a heater is square in shape, about 10 to 20
micrometers on each side. Low resistance thin film metallic
conductor. connections are attached to two opposing sides of the
heater resistor, and a pulse of electrical current is flowed through
the heater resistor for about 1 microsecond in duration. The
amplitude of this electrical current is designed to heat the resistor
enough to boil the ink. A thin layer of ink (about 0.01 micrometer
of ink) closest to the resistor explosively boils, forming a vapor
bubble and expanding about one thousand times in volume. This
volume expansion creates a pressure pulse in the fluid, causing ink
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in the nozzle (downstream of the heater) to be ejected toward the
paper. After several microseconds, the vapor bubble cools and
collapses. Then the surface tension of the ink meniscus in the
nozzle pulls in more ink from the reservoir to refill the nozzle in
preparation for the next drop to be ejected.

The second pressure pulse technique uses piezoelectric
materials, which are crystalline materials having the property of
deforming when high electric fields are applied across them. Two
configurations are commonly used: piezoelectric rods which
elongate under applied fields, or bimorphs which bend (in a
geometry similar to a drum head). In either case, these materials
are configured so that they deform one of the walls of the ink
channel leading to each nozzle. This deformation squeezes the
channel, creating a pressure pulse and ejecting ink from the nozzle.
An elastic diaphragm typically isolates the crystalline piezoelectric
materials from the ink. The electrical pulses that energize these
piezoelectric elements are once again in the microsecond range.
The ink channels in a piezoelectric ink jet printhead can be formed
using a variety of techniques, but one common method is
lamination of a stack of metal plates, each of which includes
precision micro-fabricated features of various shapes [1].

The mechanism by which a liquid stream breaks up into
droplets has been investigated for some time. Dirt in the nozzle or
air in the droplet can significantly affect the image. When a liquid
ink droplet contacts the surface of paper, it tends to spread along
paper fiber lines as well as penetrate into paper sizing and voids.
The spreading of ink droplets is often too excessive and too
irregular to maintain the resolution required. The penetration of
ink into the paper is often too slow to absorb multiple ink drops on
the same spot within very short time intervals. The poor color
image quality due to ink spreading and inter-color bleeding is
recognized as the critical issue in the development of ink-jet
technology[2].

Special ink-jet-coated media must balance between many
design parameters such as drop volume, evaporation rate,
penetration rate, coating thickness, porosity, etc. Aqueous- or
water-based inks are commonly used in home and small-office
ink-jet printers such as in the Hewlett-Packard Desklet series,
Canon BJC series, and Epson Color Stylus series ink-jet printers.
In the case of thermal ink-jet, due to the basic vapor bubble
formation process, water seems the material of choice for the
method. Viscosity of water-based ink-jet inks range from 2 to 8
cps or mPa.s [3].

Drop-on-demand (DOD) ink jet printing is considered to be
an efficient approach for depositing picoliter drops on various
targets. It is compatible with various liquids and need not contact
the substrate. Drop formation and

impaction on the substrate are important because they
significantly affect the final state of the material on the substrate.

A typical process of DOD drop formation is composed of the
following stages [4]:

a) Ejection and stretch of liquid — When a pressure
wave travels through the liquid in the nozzle, liquid
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is accelerated and pushed out of the nozzle. At the beginning,
the shape of the liquid meniscus at the exit

of the nozzle is parabolic. The meniscus then quickly extends
outward until a liquid column with a round

leading edge is formed. After short time, the internal

pressure at the exit of the nozzle falls below the pressure
inside the liquid column, and the liquid flow rate from the nozzle
decreases. The velocity difference between the head of the column
and the liquid at the nozzle exit causes the liquid column to begin
to stretch. The velocity of the liquid at the nozzle exit continues to
fall until no additional liquid flows into the column and possibly
even some of liquid is

sucked back to the nozzle. Then the volume of liquid column
remains constant, but the inertia of the liquid continues to extend
the column. The rate of extension decreases as new surface is
created with corresponding increase in surface energy.

b) Necking and Pinch-off of liquid thread from
nozzle During the stretching of the liquid column, the liquid at
the tail (at the nozzle exit) necks, i.e. the location with minimum
radius in the liquid thread. This necking point stays at the nozzle
exit, and the radius of the liquid thread here keeps thinning A
second necking point begins to appear towards the head of the
column, eventually producing a bulbous head. Thus, a long
transitional liquid column is created, reaching from the nozzle to
the bulbous head. Finally, the tail of the liquid thread pinches off
from the nozzle, creating a free liquid thread with a bulbous head.

c) Recoil of free liquid thread — Recoil occurs because
pressure is high in the tip of the tail at pinch off

due to the small radius of curvature, causing the liquid in the
tail to flow toward the bulbous end. Instantaneously, a spherical tip
at the tail develops, but its radius of curvature is much smaller than
that of the head. Therefore, the internal pressure at the tail is
greater than that at the bulbous end, and liquid is squeezed toward
the bulbous head. Since the two ends attached to the liquid thread
are not symmetrical, the head and tail behave differently. The tail
recoils (moves toward the head) while the velocity of the head is
almost constant.

d) End-pinching or multiple breakup(s) of liquid
thread — During the shrinkage of liquid thread, a second neck
near the bulbous head evolves. The radius of the neck
continuously decreases until the liquid thread breaks up into two
parts, a primary drop and a free secondary unsymmetrical liquid
thread The lower end of the secondary liquid thread moves up
while the shape of the upper end becomes bulbous. Depending on
its length, the secondary liquid thread may shrink into a smaller
drop or satellite , or break up into two or more parts. Contraction
of the satellite towards a spherical shape transforms surplus
surface energy into kinetic energy of the satellite and causes the
satellite to oscillate.

e) Recombination of primary drop and satellite — The
drag exerted by the surround air on the primary drop is different
from that on the satellite because of differences in size and
velocity. If the primary drop and satellite are sufficiently
separated, the deceleration of the larger droplet due to the drag
force is smaller than that of the small droplet. For this case, if the
velocity of the primary drop is faster that of the satellites, they will
not combine. On the other hand, if the satellite is close enough to
the primary drop, the lower pressure in the wake region behind the
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primary drop can suck the satellite toward the primary drop, and
the satellite will merge with it.

f) Oscillation to equilibrium state — When the satellite
and the primary drop merge, excess surface energy is transformed
into kinetic energy in the liquid inside the drop. The drop will
oscillate as excess energy is converted back and forth between
kinetic energy and surface energy. As the oscillations occur,
energy will be viscously dissipated until an equilibrium state is
reached. During the drop formation process, the oscillation of the
pressure wave inside the liquid chamber leads to liquid alternately
being forced out of and being sucked back into the chamber. For
most cases, the weak reflection of pressure wave is not strong
enough to cause the liquid to detach from the nozzle exit, so it
oscillates with smaller and smaller amplitude until the pressure
wave inside the chamber disappears due to the viscous dissipation
inside the chamber.

g) Satellite formation —In the description given above,
satellite formation occurs because two pinch offs

occur. If the second pinch-off does not happen before the
liquid thread contracts into a spherical profile, then the satellite
will not appear which is ideal for ink jet printing. Satellite
formation is depended on three factors: a) length of free liquid
thread, b) velocity of contraction of liquid thread and c) time of
liquid thread pinch-off. Thus, parameters related to these three
factors, such as geometry of drop generator, waveform, amplitude
of voltage, viscosity and surface tension of liquid, can be expected
to affect satellite formation.

h) The curve of DOD drop formation - In order to
discuss qualitatively the DOD drop formation process,

the position of several key points in the ejected liquid can be
plotted versus time.The velocity of any point can be calculated
from the slope of its position versus time curve. Initially, Point (1)
is the leading edge of the liquid ejected from nozzle and later
becomes the tip of primary drop or final drop. Point (2) is the tail
of free liquid thread and also the first pinch off point of liquid from
the nozzle exit. Points (3) and (4) are the lower and upper points
produced by the second pinch-off. Later, they become the tail of
the primary drop and the head of the secondary free liquid thread
or satellite, respectively. Between Points (2) and (4), other pinch-
off points may occur, but are not considered here. Point (5) is the
tip of liquid ejected from nozzle due to the multiple reflection of
pressure wave.

In analysis of inkjet process, voltage is applied and the
piezoelectric ring changes its diameters and creates a pressure
wave that propagates along the capillary tube and reflects at its
ends. In the nozzle region, the pressure wave

accelerates the liquid and ejects a column of it that will break
up into a droplet if its kinetic energy is sufficient to overcome the
surface energies.

The process described above is governed by two phenomena:
(1) the propagation of the pressure wave along the capillary tube
and (2) the conversion of the kinetic energy of the liquid jet into
surface energy. Both phenomena can be characterized by
dimensionless numbers, namely the Ohnesorge number (Oh) and
the Weber number (We) that allow determining whether a droplet
is ejected at first place and second, if it is free of satellite drops.
One considers the kinetic- surface energy conversion governed by
both the speed of the jet and the surface tension. Oh characterizes
the propagation of the pressure wave and its attenuation by viscous
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dissipation. In order to generate a droplet, two conditions need to
be fulfilled. First, the kinetic energy must be higher than the
surface energy of the drop. It is correlated with Weber number
given by

W, = KineticEnergy | SurfaceEnergy = dv’ po™

1
where d is the droplet diameter, v is its velocity, p is the
liquid density and ois the surface tension of the liquid. The second
condition is that the kinetic energy should be higher than the
viscous dissipation. This is described by the Reynolds number: Re
= Kinetic Energy Dissipated Energy.
Oh combines these two conditions:

-0.5
Oh=AWe/R,=u. (pod) @
where W is the dynamic viscosity of the liquid. We must be
large enough and Ok must be small enough to generate a drop. No
breakup occurs when We is smaller than a critical value defined by
the Equation below

We =12.(1+1.077.0h") G)

The critical value of We for water is close to 12. For We<12
no breakup occurs whereas for 12<We<18, vibration behavior
dominates and the flow enhances the amplitude of drop oscillation
to produce a few satellites [5]. A similar approach can be taken in
which the fluid properties are described by the Z-number (2)
which is equivalent to the inverse of Oh. The drop formation in a
DOD inkjet printer is only possible for Z>2[6]. It can be further
refined to predict that, for a range of concentrated alumina wax
suspensions, DOD inkjet printing takes place in the range of
1<Z<10. At Z=10 or higher, satellite-drops are formed [7].

Both the critical Ohnesorge number (Oh) and the critical
Weber number (We) are dependent on temperature as shown in
Figures 1 and 2, respectively

— 46.5
0.30 + —m—0Oh A
" [o=4=Z & d6.0
\. A
0.25 | 155
\ .
) - —45.0
020 | e .\ 445
A -
140
\.
015 |
. 13.5
55 60 65 70 75 80 85
T(¢Q)

Figure 1 Oh and Z-number of SU-8 versus temperature, a viscous and non-
Newtonian liquid.
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Figure 2 We and Z-number of SU-8 versus temperature.

In the field of micro-electro-mechanical systems

(MEMS), the negative epoxy based resist SU-8 has
contributed largely to the advances in high aspect ratio micro-
devices [8,9]

In inkjet of Newtonian fluids viscosity and surface tension are
the key material parameters. At higher capillary viscous flows,
both shear and extension forces take place, dynamic shear and
extensional viscosities are important. In viscoelastic fluids,
relaxation modulus and relaxation time also affect drop formation
and drop impaction.

The break-up dynamics of droplets and jets of complex fluids
such as elastic solutions are governed by the extensional viscosity
and surface tension of these non-Newtonian fluids. The dynamical
response of complex fluids in extension is quite different than in
simple shear. Whereas the shear viscosity of a typical elastic
solution will heavily thin with increasing shear rate, the
extensional viscosity can increase by several orders of magnitude
with increasing strain. This strain hardening has been found to
stabilize jets and drops of viscoelastic fluids by resisting the
extensionally dominated flow leading to break-up resulting from
capillary stresses. In order to understand and predict the impact
dynamics of a droplet on wormlike micelle solution thin film,
detailed knowledge of both the shear and extensional

rheology is essential. There is no experimental or numerical
data showing how elasticity and shear thinning affect the impact
dynamics of droplets on thin films or deep reservoirs of elastic or
visco-elastic solutions.

Method and Materials

Carbon black pigment inks were made by dispersing carbon
black, dispersant and water in an attritor at high concentration,20%
relative to the ink at 5%. A central composite design was used to
navigate the effect of grinder time and dispersant concentrations
on the rheological properties of the dispersion and the final ink.
Glycol , polyethylene oxide and borate ester inks were also
prepared by dispersing in water. Solid inkjet was prepared by
dispersing pigment in waxes. Rheometrics Fluid Spectrometer was
used in analyzing viscosity and normal stresses of aqueous inks
where as solid inkjet rheology was analyzed by Ares of TA
instruments.
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Result and Discussion

As shown in Figure 3, inkjet printing solutions vary in their
shear dependence and power law dependence is used to determine
the extent of shear thinning. The shear rate used in the viscometer
fall short of the shear rates present in inkjet flows. The shear rates
in DOD or drop on demand have been found to be in the range of
1000 — 10,000 sec-1 by using the following calculation.

. S
7o Z)-o| 2=

4)

where }/ is the scale of shear rate, V' is the averaged speed
of liquid ligament being jetted out from the

inkjet nozzle, S is the volumetric flow rate, An oz 18 the cross-
section area of the inkjet nozzle, and R,mz is the radius of the
inkjet nozzle. While three inks made from glycerin, carbon black
and water showed varying degree shear thinning in a capillary
rheometer, DOD drop formation for all three inks was very
similar[10]. The time scale for the shearing in the DOD inkjet
nozzle is much shorter than that in the capillary viscometer.
Depending on the concentration of a solution, a solution can show
normal stresses indicative of elasticity in addition to viscosity both
of which are shear rate dependent. A dimensionless analysis using
Ohnesorge number (Oh) Weber number (We) are not sufficient.
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Figure 4 — dependence of viscosity and normal stresses on carbon black
glycol solutions at 20%, 10% and 5% carbon black
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Figure 5- shear modulus of Phaser 8400 at different temperature and 1Hz.

An approach to obtaining better image quality without relying
on special media is the use of solid ink (or hot melt or phase-
change ink). In operation, the ink is jetted as molten liquid drops.
On contact with the media, the ink material solidifies, very little
spreading and absorption occurs so that brilliant color and high
resolution can be realized almost independent of the substrate
properties. Solid ink sticks are loaded into a hopper on top of the
machine (notably free of any packaging or cartridges). The solid
ink is then melted into a page-width print head, which jets the
molten ink onto an intermediate drum. Once an entire image has
been accumulated on the drum, it is transferred onto the receiver
through a pressure nip, and the page is either ejected into the
output tray or re-routed back through the machine for auto-duplex.

Solid Inkjet shows significant drop in shear modulus as the
temperature is increased from 30C to 130C. Temperature at which
drops are formed is in the neighborhood of 130C. The material
consisting of wax and gel is visco-elastic at lower temperatures
and as the temperature goes to 130C,the drop temperature,
modulus is between 0.01 —0.1 Pa.
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Conclusion

Analysis of Inkjet flows 1is reviewed. Viscoelastic
experiments in standard rheometers show that inkjet fluids may be
shear thinning and visco-elastic. Models and experiments offer
challenges in optimizing inkjet design.
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