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Abstract 
The performance of rollers and belts used in roller-charging, 

development and transfer sub-processes of electrophotography is 
known to depend critically on the dielectric relaxation of the semi-
insulating layer on the devices. The dielectric relaxation in turn 
requires efficient charge injection from the biased substrate. 
Taking into consideration the non-Ohmic nature of the electrical 
contacts, and the space-charge effects in the transport of injected 
charges, the impacts of charge injection on dielectric relaxation, 
and hence, on the device performance are analyzed theoretically. 
The results of analyses are confirmed by comparing with 
experimental current and voltage measurements in a 
characterization technique known as Electrostatic Charge Decay 
(ECD) method, on samples in use commercially. 

Introduction  
Devices such as charging rollers, development (or donor) 

rollers, transfer rollers and intermediate transfer belts used in 
electrophotography (EP) share a common structure consisting of a 
semi-insulating dielectric coating on a conductive substrate or 
core. In EP applications of these devices, the semi-insulator comes 
in contact with layers of insulators, which can be photoreceptor, 
toner and/or air, depending on the sub-processes. A bias voltage 
VB is applied across the series-capacitors formed by the semi-
insulator and the insulator layers, as shown schematically in 
Figure 1. 

It has been shown that for good EP performance, the voltage 
across the semi-insulator layer must relax efficiently during each 
cycle of the process [1-5]. This “dielectric relaxation” of the semi-
insulator shifts most of the bias voltage over to the insulator layer, 
and promotes the progress and efficiency of the EP process. 

In the “equivalent-circuit model” of dielectric relaxation, the 
dielectric layer is characterized by its resistance R and capacitance 
C. The voltage across the dielectric layer is expected to decay 
exponentially with time, with a time constant τ = RC [6].  
Therefore, the simplest characterization of a roller/belt seems to be 
the measurement of resistance R. However, the R measurement by 
applying a voltage directly across the layer thickness (i.e., in 
closed-circuit mode) often yields results fluctuating with the 
conditions (pressure, smoothness) of the contacts between the 
electrode and the sample. Furthermore, the measured resistance 
data are often found to be inconsistent with or unable to predict the 
EP performance of the devices. 

The reason for the failure of roller/belt characterization by 
resistance measurements can be attributed to the fact that the 
contact between the semi-insulator and the substrate electrode is 
generally non-Ohmic, mainly because of the heterogeneous nature 
of the semi-insulator material. With non-Ohmic contacts, the 
charge density in the sample is not maintained at the uniform value 
equal to the sample’s intrinsic charge density qi, but can be more 

or less depending on how much charge can be injected from the 
contacts. The amount of charge injected, in turn depends on the 
pressure and smoothness of the contacts, and the electric field and 
the charge available at the contacts. In addition, because of the low 
mobility μ (≈ 10−5 cm2/Vsec, or less)  of charges in the semi-
insulators, the Coulomb interactions among the charges during the 
transport (i.e., the space-charge effects) cannot be neglected. 
Consequently, the charge density q(x, t) becomes position- and 
time-dependent, and hence, the conductivity σ = μq or the 
resistance R = L/σ (where L = layer thickness) has no clear and 
useful physical meaning.  

 
 
 
 
 
 
 
 

Figure 1. Series-capacitors configuration of rolls or belts in 
electrophotographic charging, development or transfer processes.  

An important difference between the resistance measurement 
and the dielectric relaxation of roller/belt in EP processes is that in 
the latter case, a constant voltage is applied across both the semi-
insulator and the insulator layer, as shown in Figure 1. Therefore, 
the voltage across the semi-insulator is not constant in time (as in 
resistance measurements). The relaxation actually occurs under a 
decreasing voltage, i.e., under an open-circuit condition. This can 
be another reason why the resistance from closed-circuit 
measurements fails to predict the EP performance.  
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Figure 2. Schematic of roller/belt characterization by Electrostatic Charge 
Decay (ECD) technique. 

To simulate the open-circuit condition of dielectric relaxation, 
we have introduced a characterization technique called 
“Electrostatic Charge Decay” or ECD [7-9]. A schematic of the 
ECD method is shown in Figure 2. In this method, the test sample 
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on a grounded substrate is charged with corona current on the 
surface. In addition to the current through the sample to the 
ground, the changing surface voltage can be measured by means of 
a non-contact electrostatic probe. In the current measurements, the 
decrease of corona current with charging time (and with the build-
up of surface voltage) is monitored. In the voltage measurements, 
the surface voltages during and after corona charging are 
monitored. The measured voltage or current provides evaluation of 
the dielectric relaxation in the semi-insulator. By scanning the 
corona source and voltage probe across the sample surface, the 
technique provides additional advantages of non-destructive, 
efficient mapping of a large area of the sample for evaluating the 
uniformity of the device functions. 

In the next section, we present the first principle charge 
transport equations required to describe (and simulate) the 
dielectric relaxation of semi-insulator in the series-capacitors 
configuration of Figure 1 and the ECD technique of Figure 2. 
Numerical examples of the simulations are presented for 
comparison with experimental results in the succeeding sections. 

Charge Transport Equations for Dielectric 
Relaxation 

The motion of charges in the semi-insulator is described by 
the continuity equation for the positive (or negative) charge 
densities qp (or qn), given by (omitting the subscripts p or n), 

∂q(x, t)/∂t = −∂J/∂x = −(∂/∂x)(μqE) (1) 

where J(x, t) = μqE is the conduction current, μ is the charge 
mobility and E(x, t) is the electric field in the semi-insulator layer. 
In the insulator (of Figure 1), the charge densities and conduction 
currents are always zero, and hence, the field EI is uniform in x. 
For non-Ohmic contacts, the injection current from the bias is a 
function of the field E(0) at the contact with substrate, x = 0. For 
lack of better knowledge, it can be assumed to be linearly 
proportional to the field E(0) with the proportionality constant s 
specifying the injection strength,  

Jp(0) = sE(0),  and Jn(0) = 0   if E(0) > 0   (2a) 

or,  Jn(0) = sE(0), and  Jp(0) = 0  if E(0) < 0  (2b) 

The field E(x) is related to the charge densities qp and qn, and 
the permittivity ε  by Poisson’s equation, 

∂E(x)/∂x = [qp(x) + qn(x)]/ε (3) 

In the series-capacitors (Figure 1) the field discontinuity at 
the interface x = LS is given by Gauss’ theorem, 

εIEI − εSES(LS) = QS(t) (4) 

where εI and εS are the permittivities of the insulator and the semi-
insulator layers, respectively, and QS is the area charge density at 
the interface, x = LS.  

The voltages VI and VS in each layer are given by the 
integrals of fields, with the boundary condition that the sum is 
constant and equal to the bias voltage : VI + VS = VB.  

At t = 0, the charge-neutral conditions (qp = −qn = qi and QS = 
0) yield the initial values of fields (uniform in each layer) as, 

ES = −VB/εS(LS/εS + LI/εI),   EI = −VB/εI(LS/εS  + LI/εI)  (5) 

In the ECD experiments (Figure 2), the boundary condition 
at the surface is given by the corona current JC, represented by, 

JC(t) = Jmx[1 – V(t)/Vmx] (6) 

where V(t) is the surface voltage at time t, Jmx and Vmx are two 
empirically determined parameters of the corona device, 
representing the initial current (at V = 0), and the saturation 
voltage (at JC = 0). The surface charge density QS(t) varies with 
time as JC deposits charges on the surface, and the positive or 
negative conduction currents Jp or Jn in the layer arrives at the 
surface: 

dQS/dt = – JC(t) + Jp(L, t) + Jn(L, t) (7) 

The field at the surface x = L is related to QS by Gauss’ 
theorem: εE(L, t) = – QS(t), where ε is the sample permittivity. The 
injection of (corona) charge from the surface into the semi-
insulator is practically negligible. The initial conditions for the 
surface voltage, the field and the corona current are, respectively: 

V(0) = 0,  E(x, 0) = 0, and JC(0) = Jmx (8) 

Starting from the initial conditions, Eq.(5) or Eq.(8), the 
above set of equations can be solved by numerical iteration for the 
voltages and/or currents as functions of time, to simulate the 
dielectric relaxation in the series-capacitors or in the ECD 
experiments. Representative numerical examples of the results are 
presented and discussed in the following section. These examples 
are expressed in a system of normalized units listed in a table in 
the Appendix. A set of typical values of the units for the problems 
under discussion are also listed. 
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Figure 3. Dielectric relaxation of the semi-insulator in series-capacitors of 
Fig.1, for different injection strength s from the substrate.   

Simulation Results  
An example of the simulated dielectric relaxation in the 

series-capacitors (Figure 1) is shown in Figure 3. The time 
dependence of voltage across the semi-insulator is shown for 
different injection strengths s (defined in Equation 2). The intrinsic 
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charge density qi and the charge mobilities μp and μn, and hence, 
the (nominal) resistance R = LS/(μp − μn)qi have the same value for 
all cases. In spite of this, the voltages decay faster with larger 
injection strength s. Furthermore, the decays deviate from 
exponential in time after a short time, in disagreement with the 
prediction of the equivalent-circuit model. These curves are 
calculated with VB, LS, εS, μp and −μn having the unit values in the 
normalized unit system listed in Appendix. A small value for qi (= 
0.1) is chosen to represent the semi-insulator. The thickness and 
permittivity of the insulator are chosen as LI = 0.5, εI = 0.5, so that 
the two layers have the same capacitance C = ε/L. However, the 
above conclusions hold true, independent of these parameter 
values within the ranges of practical interest. 
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Figure 4. Decay of corona current with charging time in ECD experiments 
(Figure 2), for different injection strength s. 

It should be noted that the semi-insulator voltage in these 
series-capacitors is difficult (if not impossible) to measure 
experimentally. In contrast, the currents and voltages in the ECD 
experiments (Figure 2) can provide more easily the similar 
features of dielectric relaxation in semi-insulator under the same 
open-circuit condition. Figure 4 shows the simulated decrease 
with time of corona charging currents for samples with different 
values of injection strength s from the substrate. The currents are 
seen to decay to steady state values different for different values of 
s. 

The similar dependence on the injection strength s can also be 
seen in the build-up of surface voltage under corona charging. This 
is shown in Figure 5. In all cases, the voltages reach the saturation 
values in about 10 units of time (to in Appendix).  

In practice, the voltages in ECD experiments are measured 
with a probe located a short distance behind the corona charger, 
which scans across the sample surface. The corona charges the 
sample to near the saturation voltage, and the probe measures the 
decay of voltage afterward. The simulation results of this process 
are shown in Figure 6. The charging time is assumed to be t = 
10to. The decaying voltages approach different (pseudo) steady 
state values for different s values. 

The above simulated results for the ECD currents and 
voltages are compared with experimental results in the next 
section. 
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Figure 5. Growth of surface voltage in ECD experiments (Figure 2), with 
different injection strengths s from the substrate. 
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Figure 6. Decrease of surface voltages after corona charging in ECD 
experiments, for samples with different injection strengths s from the 
substrate. 

Experimental Results  
Figure 7 shows examples of measured ECD charging 

currents as they approach the saturation values. Similar approaches 
to steady state values of the measured decaying voltages are shown 
in Figure 8. In both figures, the saturation values of currents or 
voltages are clearly distinguishable from sample to sample, and 
from position to position within a sample. Based on the simulation 
results of the previous section, these differences can be attributed 
to different injection strengths. The ECD current and/or voltage 
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data correlate to the electrophotographic performance of these 
devices.  
 

  
Figure.7. ECD experimental results of charging currents for various samples, 
showing the approaches to distinct saturation values. 

Summary and Conclusions 
Based on the understanding that dielectric relaxation of the semi-
insulator layer is the most important physics underlying the 
performance of rollers/belts in EP, a mathematical model of 
dielectric relaxation is introduced. The model is based on the first 
principle charge transport equations, taking into consideration the 
non-Ohmic nature of the contact at the substrate (or core), and the 
Coulomb interaction among moving charges. The model is applied 
to the series-capacitors configuration which is common to roller-
charging of photoreceptors, and charging, development and 
transfer of toners. It is also applied to the ECD experiments 
designed for an efficient characterization of rollers/belts, under an 
open-circuit condition as in those EP sub-processes. In both cases, 
it is demonstrated that a stronger injection of charges from the 
contact into the semi-insulator significantly increases the 
efficiency of dielectric relaxation in the semi-insulator. In the case 
of ECD experiments, the injection strengths and hence, the 
efficiencies of dielectric relaxation are depicted by the (easily 
observable) steady-state values of charging currents and/or the 
decaying voltages. This confirms the unique advantage of the ECD 
technique as a characterization tool for the rollers/belts in 
electrophotography. 

 
Figure 8. ECD experimental results for various samples of voltage decay 
after corona charging, showing the approaches to distinct saturation values. 
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Appendix: Table of Normalized units 

       Units                               Typical Values                                       
                        Basic units: 
Length or thickness: Lo 10−2 cm 
Permittivity: εo 3 x10−13 F/cm 
Voltage: Vo 103 V  
Charge mobility: μo 10−5 cm2/Vsec 
                        Derived units:   
Field: Eo = Vo/Lo 105 V/cm 
Time: to = Lo/μoEo  10−2 sec 
Charge density/area: Qo = εoEo 3 x10−8 Coul/cm2 
Charge density/vol.: qo = Qo/Lo 3 x10−6 Coul/cm3  
Current density Jo = Qo/to 3 x10−6 Amp/cm2 
Injection strength: so = μoqo 3 x10−11 S/cm 
-------------------------------------------------------------------- 
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