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Abstract

A new roll-to-roll manufacturing platform has been
developed that enables the fabrication of durable and flexible
electronics. Here we present this platform capability and its
application to create thin, conformable, reflective paper-like
displays. Segmented “electronic skins” are demonstrated that can
change their appearance upon application of low-power electronic
signals. HP proprietary “inks” that can be electrically addressed
are shown to enable print-like color performance.

1. Introduction

Hewlett-Packard has developed new roll-to-roll processing
capabilities for making fine scale circuitry on plastic substrates
that is compatible with the needs of reflective displays and other
devices. Plastic circuits enable light-weight and robust devices,
while the thin and flexible format enables new design freedom.
The processes are scalable to large web widths, and the fine
features enable high density circuits and future integration with
more complex passive and active elements. These roll-to-roll
processes, which utilize imprint lithography and related techniques
as key patterning steps, also offer significant cost advantages
compared to conventional photolithographic processes [1, 2].

In addition, we have developed a new device architecture
compatible with roll-to-roll plastic circuits that can be combined
with proprietary electrically addressable “inks” to achieve print-
like color performance as well as transparency. By using similar
technology as in color printing, we are developing the capability to
produce specific “ink” colors within the Pantone Matching System
range of colors.

Here we report thin, flexible, segmented, reflective
“electronic skins” manufactured with HP’s roll-to-roll platform.
These electronic skins can change their appearance upon
application of low-power electronic signals. We recognize that
personalization is a significant trend in consumer products.
Examples of consumer electronics include cell phone ringtones
and screen display themes/wallpaper, MP3 player and laptop case
colors, and adhesive graphic skins, which are all user-selectable
options. Others are taking note of these same trends and recently,
electronic skins have also been demonstrated using different
display technologies [3, 4]. The technology approach described
here achieves reflective color quality compatible with standards
used in the printing industry while utilizing cost-effective roll-to-
roll manufacturing processes.
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2. Roll-to-Roll Capability

2.1. Tools and Processes

HP has developed a suite of roll-to-roll tools aimed at
enabling the development of a range of novel processes suitable
for electronic skin and similar product manufacturing. The custom
equipment set reported here (partly shown in Figure 1) is capable
of continuous processing of webs with widths from under 0.15 m
up to 0.3 m wide. Both plastic and metal webs can be handled in
roll-to-roll configuration. The tool set enables unit processes that
include coating, imprinting, plasma treatment, electrolytic and
electroless plating, and laser micro-machining. All operations are
carried out in a clean-room environment, an unusual but necessary
approach for this tooling set for defect-free processing.

The coat and imprint processes use proprietary resin materials
and novel cylindrical stamps to form the basic patterns for both
fine-line circuitry and other architectural components. This can be
done in one operation by a technique that allows replication of
multiple level patterns continuously down the web.

HP’s roll-to-roll plasma tooling enables selective material
removal, as well as surface treatments for improved electrical,
physical, and environment characteristics of both dielectrics and
conducting materials. In-line process control systems on the tool
are employed to achieve uniform treatment both across and down
the web, as well as uniformity of treatment depth and chemistry.

The electrolytic and electroless roll-to-roll plating tools have
been designed to provide a wide range of chemical processing,
most notably the deposition of conductor traces, noble metals for
contacts, and metal alloy compositions with dielectric and
magnetic properties. Deposition is possible on both conductors
and insulators, thereby allowing deposition on bussed and
unbussed metallic structures, and on plastic and other non-
conducting surfaces.  Sophisticated electrical current control
allows deposition of materials with optimal mechanical and fatigue
characteristics. Our goal with this plating technology is to be able
to make conductors and integrated passive and active devices at
low cost without the need for discrete components.
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Figure 1. Roll-to-roll process equipment.

HP has had a long history of successful laser processing
development for a range of applications. We have extensively
leveraged this capability in a flexible laser tool that is used for
achieving complex patterns using both direct pattern formation
through UV light ablation, and using large-area light exposure for
patterning photo-sensitive materials. These approaches enable
submicron precision in feature dimensions and positioning, with
the advantage of high throughput speed and resulting cost
effectiveness.

2.2. Circuit Capabilities

By integrating combinations of these various processes,
functional circuits are demonstrated. One example of a completed
test circuit is shown in Figure 2. The patterns produced can have
features with minimum width dimensions of less than 5 microns,
edge definition that is sub-micron, and product lengths up to 30
cm. Areas up to 150 cm® have been produced to date. Continuous
lengths of repeating patterns are also possible, enabling very long
devices. Conductivity, flexibility and other electrical/mechanical
properties that are required for a given product implementation are
determined by material selection, deposition thicknesses, and
process conditions.

3. Integrated Electronic Skin Prototypes

Plastic circuits fabricated using the processes described above
have been integrated with HP proprietary inks that can be
electrically controlled. Our approach to color and a demonstration
of segmented prototypes are described below.
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Figure 2. Example test circuit from roll-to-roll process.

3.1. Approach to Color

We have approached the challenge of generating high-quality
reflective color images from the perspective of printing rather than
from the conventional display perspective. Conventional displays
typically use a combination of side-by-side color elements to
generate additive color (e.g., RGB or RGBW color filters).
Conversely, subtractive color is typically generated in printing by
layering pigments or dyes (CMYK) on top of one another. Since
reflective images rely solely on ambient light, the image will be
bright and colorful only if the incident light is reflected efficiently.
Side-by-side color approaches devote portions of each pixel to
only certain colors, so they inherently absorb the majority of the
incident light, and thus are inefficient (<50% efficiency).
Similarly, approaches that rely on polarized light typically absorb
the majority of the incident light, and are also very inefficient
(<50% efficiency). On the other hand, layered colorants enable the
ability to address every available color at every location, so they
can produce bright and colorful images (with >50% efficiency)
when half the incident light is not lost due to polarization effects or
other losses.

Indoors Outdoors

a* a* : —_—
Figure 3. Color gamut volumes comparing SNAP (black interior wireframe),
SWOP (green wireframe), and conventional LCD notebook display

performance under typical indoor and outdoor ambient illumination.

For reflective color devices, printing standards (designed for
reflective images) are preferable to conventional display standards
(designed for emissive/transmissive images) for evaluating image
quality. In the printing industry, advertisers are accustomed to
standards such as the Specifications for Newsprint Advertising
Production (SNAP) used for newspaper ad inserts and the
Specifications for Web Offset Publications (SWOP) used for
magazines and other high quality printing. Significantly, SNAP
requires ~57% peak reflectivity while SWOP requires ~76% peak
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reflectivity, neither of which can be achieved by color filter or
polarization approaches that are <50% efficient.

It is also important to consider the complete color gamut
achievable, not just the peak reflectivity of the white state. Figure
3 compares the color gamut volumes of the SNAP standard,
SWOP standard, and a conventional LCD notebook display,
measured both in a typical indoor office environment (ambient
illuminance level = 300 lux) and in a typical outdoor environment
on an overcast day (ambient illuminance level = 3000 lux). You
can clearly see the dramatic reduction in both the contrast and
color gamut volume of the LCD display when viewed outdoors,
where the gamut becomes negligible compared to print.

The HP technology presented here is predicted to exceed the
SNAP printing standard using a system of layered colorants (based
on optical simulations). It is also capable of providing custom
colors within the Pantone Matching System range of colors using
single layer devices.

3.2. Demonstrated Performance

Figure 4 shows electronic skin prototypes fabricated with
plastic circuits and electronically addressable inks. The examples
shown here are segmented devices with an effective resolution
>100 ppi. Figure 4(a) shows a magenta prototype with no power
applied. The colorfulness of this sample (C* = 67) exceeds the
magenta specification in the SNAP standard (C* = 44), and
approaches that of the SWOP standard (C* = 70). Figure 4(b)
shows the same magenta device with a low-power holding voltage
applied (<50 uW at 3V) to make selected regions of the device
transparent, exposing a white background (in this case, simply a
sheet of HP photo paper). The active area is 80 mm x 80 mm.
Figure 4(c) shows a black prototype with no power applied, and
Figure 4(d) shows that a selected region of the white stripe behind
the skin can be revealed. The active area is 45 mm x 80 mm.

(a) (b)

© (d)

Figure 4. Plastic electronic skin prototypes shown over a paper background.

Figure 5 shows the same device as in Figure 4(c,d) placed
over the printed HP logo to show the switchable and patternable
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transparency. The measured transmittance for these prototypes in
the transparent state is ~60% (at 550 nm). Further optimization is
underway to increase the transparency. This transparency is key to
enabling the layered approach to subtractive color described above
in Section 3.1. It also enables backlighting and additional design
flexibility for electronic skins, compared with display technologies
that do not have a transparent state.

’

Figure 5. Switchable and patternable transparency.

The examples shown so far demonstrate that these electronic
skins can be used as decorative and dynamic surfaces for
personalization and customization. Figure 6 shows that they can
also provide functionality, such as status icons, mode settings, etc.
The active area is 35 mm x 80 mm. Importantly, these skins are
daylight readable, like printed images, so that key information can
remain visible in bright sunlight even when a conventional LCD
display would be washed out. They are also ultra-low power, so
information can be conveyed even when a conventional LCD
display may be turned off to conserve battery life.
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Figure 6. Functional surfaces that are daylight readable and ultra-low power.

Table 1 contains the key characteristics of these prototype
devices. Importantly, they are very thin, as shown in Figure 7(a),
and flexible, as shown in Figure 7(b), so they can be incorporated
as surface skins on a wide range of possible products. We
conducted initial reliability tests and observed that these devices
maintain their switching characteristics after high voltage
electrical soaks (>12 hr at constant 60 V DC), intensive electrical
cycling (>500,000 cycles at +/-80 V, 1 Hz square wave), low
pressure cycling (to 700 mbar), thermal soaks (>500 hr at 55° and
70°C), and across a broad temperature range (-30° to 80°C).

Table 1. Prototype Characteristics

Attribute Value

Thickness <0.4 mm

Transparency >60%

Contrast ratio ~10:1

Switching time <500 ms (depends on
voltage)

Switching voltage 20-40 V (depends on
switching time desired)
<1 pW/cm2 (at~5V)

5-10 mm

Holding power
Bend radius (minimum)

(@) b

Figure 7. The devices are thin and flexible.

Figure 8 shows four devices based on proprietary electrically
addressable “inks” for the subtractive primary colors of cyan,
magenta, and yellow, as well as black. The active area is 80 mm x
80 mm. The colorfulness of each device (cyan C* = 66, magenta
C* = 67, yellow C* = 69) exceeds the specification in the SNAP
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standard (cyan C* = 35, magenta C* = 44, yellow C* = 55)
described above.

Figure 8. Proprietary electrically addressable CMYK “inks”.

4. Conclusions

Key achievements demonstrated with this platform capability
are plastic circuits with fine feature sizes <5 microns using
imprinting and an integrated continuous roll-to-roll process. Thin,
flexible, segmented electronic skin prototypes based on a new
architecture and proprietary electrically addressable “inks” enable
reflective color with print-like performance and high resolution
patterns.
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