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Abstract 
A novel method for producing charged particles suspended in a 
dielectric fluid for electrophoretic display is presented.  Typical 
charged particles for electrophoretic display contain polymer 
resin, color pigment, and/or charge controlling compound.  Many 
methods for producing charged particles have been reported 
including the polymerization in the presence of pigment particles.  
In this paper, we described a method to meltmix polymer resin, 
pigment, and charge controlling agent all together in the dielectric 
fluid such as Isopar.  The resulting solution contains charged 
color particles with average particle size about 2 µm or less.  The 
colored particle solution was mixed with white particle solution 
containing titanium dioxide to form a two-color switching 
electrophoretic display.  The display built with such two-particle 
solution was demonstrated.  The solutions of two-color particles 
can be sealed between two thin plastic films with small divided 
compartments.  A roll-to-roll manufacturing method that provides 
large area of small compartment with two-color particle solutions 
was discussed. 

Introduction  
 
 
 
 
 
 

 
Figure 1. The schematic drawing of 2-color electrophoretic display 

Electrophoretic display has been demonstrated since 1990’s. An 
electrophoretic display using microcapsule, liquid crystal image 
display, a twisting ball display, photo-address electronic paper and 
polymer dispersed liquid crystal electronic paper are reported as 
rewritable technology.1-4   Figure 1 showed the concept of the 2-
color electrophoretic display. The ink encapsulation with polymer 
shell as the ink compartment is the most popular approach. 
 
Liquid toner xerography has been developed since 1980’s.  The 
toner was suspended in dielectric fluids such as oil.  The average 
size of liquid toner can be about 2 µm or smaller, which provides 
superior image quality over the conventional dry toner.  
Conventional dry toner particles can not be so small since the 
particles will be air borne and cause human health problems.   
 
Liquid toner particles are charged just like conventional dry toner.  
The charge of the liquid toner is due to the charge control agents 
on the toner surface and the counter charge director micelles in the 
fluid (Figure 2).  Conventional toner has to be dried if it is 
produced from chemical methods or pulverized if it is produced by 
melt mixing.  Since the final product format of the liquid toner is 
suspended particles in the fluid, it makes sense that the liquid toner 
is produced in the fluid for final use. In this paper, we will focus 

on a novel method for producing charged particles suspended in a 
dielectric fluid for electrophoretic display.   
 
Figure 2 describe the charge mechanism.  Liquid toner particles 
contain CCA and pigment in the toner resin.  The charge director 
micelles act as counter charges in the dielectric fluids. 
 

 

 

 

 

 

 
Figure 2. Liquid toner charge mechanism 

Experimental 
 
The toner process include 2 major steps: melt mixing process and 
cool-kneading process.  As shown in Figure 3, a stainless steel 
attritor with steam heating from the surface jacket was used for 
these processes.  First, the resin, pigment, and charge control 
agent, dielectric fluid, and grinding balls were added in a 
preheated attritor at 100°C.  After 2 hours of mixing, the steam 
was turned off.  The mixing continued in this cooling and 
kneading process.  Typical process time in this step is about 3 
hours.  After this step, the mixing was stopped and the grinding 
balls were filtered out from the final product.  We have found that 
the surface charge on the particles were very sensitive to the 
material of the grinding balls.  When stainless steel balls were 
used, the white particles turned a little gray color and the surface 
charge was not very high.  zirconia balls were found to maintain 
very well the whiteness for white particles with our resin and 
charge control agent.  All the toner presented in the paper was 
made with zirconia balls. 

 

 

 

 

 

 
Figure 3. Attritor with grinding balls 
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White particles 
Titanium oxide particles (Tipure, from DuPont) were used as the 
pigment for the white particles.  The resin is NUCREL 599 (a 
copolymer of ethylene and methacrylic acid, from E.I. DuPont de 
Nemours & Company, Wilmington, Del.).  The charge control 
agent (CCA) is an organic aluminum complex such as aluminum-
di-tertiary butyl salicylate (ALOHAS).  The weight ratio for 
resin:pigment:CCA is 75:25:1.  The dielectric fluid is ISOPAR M 
(Exxon Corporation) which was added to a Union Process 1S 
attritor (Union Process Company, Akron, Ohio) charged with 5-
mm diameter zirconium balls. The solid content is 13% by weight.  
The mixture resulting was milled in the attritor, which was heated 
with running steam through the attritor jacket to 80°C. to 115°C 
for 2 hours.  The mixture was then cooled to 23°C. by running 
water through the attritor jacket.  The contents of the attritor were 
ground for an additional 3 hours.  The mixture resulting was 
separated from the zirconia shots.  The average particle size from 
this process is about 2.5 to 3.5 µm with GSD of about 1.2. 
 

Black particles 
The black pigment contains both magnetite particles and carbon 
black.  Carbon black has good light blocking properties that can 
provide very good contrast, but it is not insulative to hold the 
charge when the percentage is too high.  The weight ratio between 
the magnetite particles (such as MTH-009F from TODA, Japan) 
and the carbon black (such as REGAL 330 from Cabot 
Corporation) are 6 or higher.  The resin is NUCREL 599 and the 
CCA is an organic aluminum complex such as aluminum-di-
tertiary butyl salicylate.  The weight ratio for resin:pigment:CCA 
is 60:40:0.25.  The processing conditions are the same as described 
above.  The final solid content for black dispersion is about 9.0%. 
 

Blue particles 
Blue particles also provide good color contrast when working with 
white particles.  Blue pigments such as heliogen blue were used as 
the pigment for the blue particles.  The resin (NUCREL 599) and 
the CCA are the same as previous particles.  The weight ratio for 
resin:pigment:CCA is 75:25:0.25.  The processing conditions are 
the same as described above.  The final solid content for blue 
dispersion is about 3.9%.   
 

 

 

 

 

 

 

 
 

Figure 4. The process for making electrophoretic display 

Electrophoretic Display  
The components of a typical electrophoretic display for testing 
liquid toners are shown in Figure 4.  Both sides of the spacer were 
first coated with adhesive.  The spacer was then mounted on the 
bottom sheet of silver-coated film, followed by mounting the top 
sheet of silver coated film.  The liquid toner dispersion was then 
injected into the space between the top and bottom sheets.  The 
final step is to connect the electrophoretic display to a power 
supply.  The final electrophoretic display for testing liquid toners 
is shown in Figure 5.  The connections between the power supply 
and the display are not shown in Figure 4 and 5.  This spacer is 
polymeric films with pre-determined empty structures as ink 
compartments.  This spacer-adhesive laminates can encapsulate 
ink and seal the ink for the display, which is feasible for roll-to-
roll manufacturing method. 

Two-color particle systems 
The optimum composition of two-color particle system is 
determined by the optimum color contrast, switching filed (V/µ), 
switchability and 100K cycle switching test.  The switching field 
ranges from 0.5 to 2.5 V/µ with an 80 µm gap between the two 
confining electrodes.  The switchability was determined by how 
fast the white and the color refresh itself.  Non-optimal color and 
white particle mixture tends to stick to plate, resulting in a slow 
color refreshing rate.   Since the focus was on maximizing the 
color-white contrast initially, we used a scale: fast, medium and 
slow to qualitative screen the particle composition and two particle 
mixing ratio.  It was found that the solid white particles should be 
more than the color particles and the weight ratio of white particles 
to color particles is above 2 and less than 4.  More white particles 
are needed to achieve the best contrast in color. 
 

 

 

 

 

 
Figure 5. Eletrophoretic display and device for testing 

Results and Discussion 
 
Typical two-particle formulations are shown in Table I.  For each 
individual particle formulation, the conductivity is also included in 
Table I.  It was found that a conductive black particle formulation 
did not work too well.  The last column of Table I lists the other 
mixing ratio tested for the two particle system.  The best mixing 
ratio was determined by high color contrast and fast color refresh 
rate.   Figure 6 displays the optical density (OD) contrast for the 
current best black/white and blue/white particle systems.  The OD 
contrast can vary from 0.26 to 0.84.  Even for the same black and 
white particle, the OD contrast increases significantly with the 
increase of the amount of white particles, e.g., in the EV particle 
system (see Table I).   Bottom sheet of Silver-coated film

Top sheet of Silver-coated film

Ink reservoir

Screen Spacer 90-minute Epoxy

Bottom sheet of Silver-coated film

Top sheet of Silver-coated film

Ink reservoir

Screen Spacer 90-minute Epoxy
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Table I.  Various tested black, blue and white electrophoretic 
particle systems.  

 

Table I includes the formulations of the current best black/white 
(EV ink) and blue/white (Y ink) two-particle systems.   The 
current best black/white system gave a very good OD contrast.  
The black OD is as high as 1.47.  The system required about 110V 
to switch to white.  The black and white particles showed very 
little agglomeration thus only some degradation of black OD and 
black-white OD contrast after 100K cycle switch test.  By contrast 
the current best blue/white two-particle system appears to give a 
lower OD contrast than the current best black/white system 
although the blue OD of about 1.5 can be achieved.  The lower OD 
contrast is due to the agglomeration of a small amount of blue 
particles with the white particles in switching to white background, 
while a small amount of white particles mixed with a majority of 
blue particles does not seem to affect the blue OD significantly.  
Other performance issues of the blue/white two-particle system 
include more degradation of both color OD and color contrast as a 
function of switching cycles during a 100K cycle test than the 
black/white system. 

Although several two-particle electrophoretic inks with excellent 
color OD and switchability with a low expected switching field, 
the charging mechanism of two-particle system is still not clearly 
understood.  It was shown that the color contrast degrades after 
100K cycle test.  This may be due to the undesirable particle 
adhesion of the color particles with the white particles.  Lastly, the 
key parameters for ink process control are not fully defined yet.  
This may lead to a display to display various. 

Figure 6. Optical density of 2-color electrophoretic displays. 
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INK NAME COLOR COMP WHITE COMP BEST OTHERS
A :-12 Black ;-11 White 4/5 4/5, 5/5, 3/3

Magnetite; 25% TiO2;  25%
Nucrel 599;  75% Nucrel 599;  75%
Alohas 6;  0.25% Alohas 6:  1%
Solids;  8.07% Solids;  12.96%
Conductiv; 0.30 p/cm Conductiv;  0.29 p/cm

Y Heliogen blue ;-11 White 3/3 3/4, 2/6
Pigment;  25% TiO2;  25%
Nucrel 599;  75% Nucrel 599;  75%
Alohas 6;  0.25% Alohas 6:  1%
Solids;  3.88% Solids;  12.96%
Conductiv;  0.31 p/cm Conductiv;  0.29 p/cm

R 1 ;-21 Black ;-11 White 2/4 3/3, 1.5/6
Mg/MTH-009F;  40% TiO2;  25%
Nucrel 599;  60% Nucrel 599;  75%
Alohas 6;  0.25% Alohas 6:  1%
Solids;  8.54% Solids;  12.96%
Conductiv;  0.31 p/cm Conductiv;  0.29 p/cm

R II ;-22 Black ;-11 White 2/4 3/3, 1/3, 1.5/6
Mg/TMB-100;  40% TiO2;  25%
Nucrel 599;  60% Nucrel 599;  75%
Alohas 6;  0.25% Alohas 6:  1%
Solids;  9.68% Solids;  12.96%
Conductiv;  0.29 p/cm Conductiv;  0.29 p/cm

H ;-23  Black ;-13 White 2/5 3/3, 1/3, 1.5/6
Magnetite;  36% TiO2;  25%
Carbon Black;  1.35% Nucrel 599;  75%
Nucrel 599;  60% Alohas 6:  1%
Alohas 6;  0.25% Solids;  12.09%
Solids;  9.25% Conductiv;  0.29 p/cm
Conductiv;  0.31 p/cm made as -74

EV ;-29 Black ;28 White 2/5 2/4
Magnetite;  32% TiO2;  25%
 Carbon Black;  2.7% Nucrel 599;  75%
Nucrel 599;  60% Alohas 6:  1%
Alohas 6;  .25% Solids;  14.32%
Solid;  8.79% Conductiv;  0.27 p/cm
Conductiv;  0.27 p/cm
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