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Abstract 
In the field of electrophotographic printing, the emergence of 

next-generation printing technologies such as chemically prepared 
toners (CPT) is changing pigment performance requirements.  In 
conventional toner manufacturing, high shear rates during 
compounding of the resin and pigment, followed by rapid 
solidification are necessary to ensure uniform dispersion. In 
contrast, most chemical toner processes do not rely on mechanical 
mixing to achieve good pigment dispersion in the toner. CPT 
processing occurs in the presence of multiple liquid phases. Under 
these conditions pigments can easily be separated from the resin. 
Without the benefit of high shear mixing and in the diverse 
environment of a multi-component CPT system, pigments must 
now balance ease of dispersibility with resin compatibility. 
Improving compatibility with the main components of a chemical 
toner allows the pigments to disperse and to remain dispersed 
throughout the entire CPT process (processes such as emulsion 
aggregation and direct polymerization). In response to these 
challenges, Cabot has developed several surface modification 
technologies that enable dispersions of pigments in chemical toner 
systems. In this paper, we will discuss how the improved 
dispersibility, compatibility, and processability of Cabot’s 
modified pigments in toner resin dramatically improve the 
resulting color performance. Through proper design of the 
pigment surface, these benefits can be realized in any one of the 
well known chemical toner processes. 

Introduction 
Historically conventional toner particles have been prepared 

by compounding pigments into polymers, grinding the resulting 
compound and classifying toner particles. To enable higher 
resolution printing and to lower the total cost of printing, many 
toner manufacturers have begun adopting chemical toner 
processes, as illustrated in Figure 1 below.  

 
Figure 1. Steps in the preparation and use of a chemical toner and 
the requirements imposed on the pigment during each  

  
The evolution of electrophotographic printing from 

conventional toners to CPT requires improved performance of the 
base pigments in all stages of the CPT process. In these processes 
the pigments not only need to remain well-dispersed first in a 
liquid phase (water, solvent, or monomer depending on the 
process) but then must stay well-dispersed whilst being 
incorporated into a toner resin polymer either through an 
agglomeration process or through polymerization around the 
pigments. In both of these cases, there is no further dispersion of 
the pigment into the toner polymer. This creates a challenge for 
both the toner formulators and the pigment suppliers, as the 
pigments need to remain dispersed in phases that are chemically 
very different without the application of any mechanical energy. 
Finding the right balance of good dispersibility across multiple, 
diverse liquid phases and maintaining compatibility in the final 
toner resin polymer directly impacts print performance. Figure 2 
summarizes the relative improvements in image density, chroma, 
tribocharging, and overall ease of processing. 

 
Figure 2. Relationship between improved pigment dispersibility 
and resulting toner performance  

  
Previously, Kyrlidis et. al. have explored the sensitivity of 

carbon black compatibility to changes in host resin polymer 
properties. They showed that control of carbon black surface 
chemistry can enhance pigment dispersibility, improve resin 
compatibility and deliver better image density [1]. In this paper, 
we will present several advances in polymeric surface 
modification technologies that enable improved dispersions of 
colored pigments in chemical toner systems. We will then discuss 
how the improved dispersibility, compatibility, and processability 
of Cabot’s polymer modified pigments in comparative toner resin 
testing dramatically improve the resulting color performance. 
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Surface Modification of Colored Pigments 
Over the past decade, Cabot Corporation has developed 

proprietary chemical modification technologies that can be used to 
alter the surface chemistry of pigments. One type of chemical 
modification technology utilizes diazonium salt intermediates to 
attach a variety of functional groups to carbon black and colored 
pigments [2].  The reaction chemistry is summarized in Figure 3. 
The treating agent contains a functional group R, which can be 
varied according to the application requirements.  

 

 
Figure 3. Pigment modification using diazonium chemistry 

 
Using diazonium chemistries to modify the surface of 

pigments now presents a library of different options for tailoring 
the dispersibility and compatibility of pigments in a host solvent or 
toner resin system, see Figure 4. 
 

Figure 4. Cabot approaches to functional pigments for CPT  
 

The treatment methods outlined above give us broad 
flexibility to match the pigment surface characteristics to the 
requirements of a specific chemical toner process.  Small-molecule 
diazonium treatments alone (Figure 4I) can effectively tune the 
surface energy of pigment surface for improved resin compatibility 
with ranges of treatments that are hydrophilic, hydrophobic, basic, 
acidic, reactive, etc. There are also examples where select 
polymers can have high affinities for certain pigments in the 
absence of surface modification. However, polymer functionalized 
pigments (Figure 4II) stabilized solely through physisorption, such 
as conventional dispersants, can destabilize during toner 

formulation testing and limited conventional dispersant solutions 
exist today for colored pigments. Two approaches which we would 
like highlight in this paper are routes III and IV described in 
Figure 4. One way to prevent pigment agglomeration due to 
desorption of polymers from the pigment surface is to combine 
surface modified pigments with functional polymers (Figure 4III). 
Here, complementary non-covalent interactions between surface 
modified pigment and polymer are used to enhance dispersion 
stability. In these systems, the resulting pigment dispersions will 
remain stable indefinitely until something begins to compete with 
the polymer-pigment interaction. In a system such as this, where 
toner formulations could compete with pigment-polymer 
interactions, Cabot has engineered a series of polymer modified 
pigments where the polymer has either been grafted to or directly 
reacted with the pigment surface (Figure 4IV). Direct polymer 
attachment affords stable pigment dispersions with formulation 
flexibility. In this paper, we present a compatibility study of two 
Cabot approaches to polymer modified pigments (routes III and IV 
of Figure VI) versus conventional dispersant approaches (Figure 
II.) spanning three different colored pigments (PB15:4, PR122, 
and PY74), see Table 1. 

 
Table 1. Polymer modified colored pigments for model 

polyester toner resin compatibility testing 
Sample Pigment Route Description 

CYAN-Conv PB15:4 II Conventional 
CYAN-1 PB15:4 III Strong Association 
CYAN-2 PB15:4 IV Direct Attachment 

MAG-Conv PR122 II Conventional 
MAG-1 PR122 III Strong Association 
MAG-2 PR122 IV Direct Attachment 

YEL-Conv PY74 II Conventional 
YEL-1 PY74 III Strong Association 

Colloidal Stability Testing and Preparation of 
Pigment-Polyester Films 

In addition to standard colloidal stability testing (e.g. particle 
size, heat aging stability), multiple formulations of polymer 
modified colored pigment in ethyl acetate with a model polyester 
resin (Reichold Fine-Tone T-6694) were prepared. Polyester resin 
and color pigment dispersions dispersed in ethyl acetate were 
prepared at varying % pigment loadings from 1% to 6% 
pigment/resin ratios. The resulting formulations were then drawn-
down onto glass slides and BYK-Gardner opacity charts using a 2 
mil draw down bar (0.002 inches = 50 micron). Compatibility 
testing of each polymer functionalized pigment within the 
polyester resin was evaluated on from composite films on glass 
slides using an Olympus BX51 optical microscope. The resulting 
films’ color was then analyzed from films let down onto BYK-
Gardner opacity charts using a HunterLab spectrophotometer. 

Optical Microscopy of Pigment-Polyester 
Films 

Measuring compatibility between the polymer modified 
pigments in polyester resin using optical microscopy, although a 
qualitative approach, proved invaluable in determining which 
routes were most promising (see Figure 5). 
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III. Surface modified pigments with polymers/dispersants:

IV. Direct attachment of polymers to the pigment surface (“Dispersant-
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Figure 5. Optical microscopy images of polymer modified 
pigments in model polyester resin at varying % pigment loadings   

 
As is shown in the optical microscopy images in Figure 5, 

pigment compatibility within the polyester resin is quite varied 
depending on the polymer modification route chosen. In all cases, 
routes II (using conventional dispersants) and routes III (strong 
association) show varying degrees of pigment agglomeration in the 
polyester let down films. All pigments tested with conventional 
dispersants showed both poor dispersion in the polymer film and 
poor dispersion alone in ethyl acetate with particle sizes > 500 nm. 
In contrast, polymer stabilized pigments using route III have been 
shown to have excellent dispersion properties alone in solvent 
(particle sizes < 200 nm); however, in the presence of the 
competing polyester host resin, the pigment agglomerates. The 
most robust polymer modified pigments presented are ones 
prepared using Route IV. Direct attachment of polymers to the 
pigment clearly offers the advantage of good dispersion in solvent 
alone (particle sizes < 200 nm) as well as good dispersion in the 
resulting dried polyester films. These “dispersant-free” covalently 
attached, polymer modified pigments show excellent compatibility 
in the Reichold T-6694 resin as well as many other systems not 
discussed today. Being able to sustain good pigment dispersion 
during the formation of the dry polyester films (which we use as 
our model CPT process) has direct consequences on the resulting 
films color performance.   

Color measurements of Pigment-Polyester 
Films 
After compatibility testing, we evaluated the color of the polyester 
films containing polymer modified pigments using a HunterLab 
spectrophotometer (see Figure 6). The color data details the 
L*a*b* coordinates of all of the polymer modified 
pigment/polyester composites at varying % pigment loadings.  

Figure 6. Plots of L*a*b* space of polymer modified pigments in 
model polyester resin at varying % pigment loadings  
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Mirroring the results from the compatibility testing, films 

prepared from Route IV polymer modified pigments showed the 
best color performance. For cyan and magenta, direct attachment 
of polymer to the pigment surface yields larger chroma values at 
lower % pigment loadings (see Figure 7).  

 
Figure 7. Chroma values of polymer modified pigments in model 
polyester resin at varying % pigment loadings 

 
In addition to improved chroma, direct attachment of polymer 

to the pigment surface improves color gamut. Cabot’s “dispersant-
free” magenta dispersions were able to access much warmer tones 
of magenta (yellow shade), not possible with conventional 
dispersants. Similarly, “dispersant-free” cyan dispersions were 
able to access the most neutral tones of cyan (negligible a* 
contribution), not possible with conventional dispersants. And 
finally, despite agglomeration in the polyester films, Cabot’s 
polymer-dispersed PY74, YEL-1, shows a dramatic chroma 
improvement of almost 40 units compared with conventional 
dispersant sample YEL-Conv resulting in brighter, more vivid 
printed images. 

Conclusions 
Cabot has developed several surface modification 

technologies that enable dispersions of pigments in chemical toner 
systems. The resulting improvements in the dispersibility, 
compatibility, and processability of Cabot’s modified pigments in 
toner resin dramatically improve the resulting color performance. 
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