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Abstract 
 
Core-shell (C-S) particles having ultra-thin shell layers on 

the core particle surface are prepared with the coacervation 
process and their surface structure or tribo-charging 
characteristics are investigated. Spherical, positively chargeable 
polymethyl- methacrylate (PMMA) particles having a particle size 
of approximately 10 µm are used as the core particles. Negatively 
or positively chargeable ultra-fine particles having a particle size 
of 3 to 100 nm are used as the shell particles. Through the 
coacervation process in water, the shell particles are precipitated 
onto the core particle surface to yield C-S particles. From SEM 
observation and the blow-off tribo-charge measurements of the C-
S particles, it is confirmed that (1) an ultra-thin single shell layer 
having a thickness of less than 20 nm and completely covering the 
underlying core surface is obtained, (2) the charging 
characteristics of the C-S particles are governed by the 
composition of the ultra-thin layer, (3) double shell C-S particles, 
in which a second ultra-thin shell layer is coated over the single 
shell C-S particles, are also obtained, (4) the charging 
characteristics of the double shell C-S particles are governed by 
the composition of the second ultra-thin shell layer. 

Introduction 
It is said that high quality core-shell (C-S) type toner can be 

obtained more easily in chemical toner than in pulverized toner. 
The remarkable feature of the C-S type toner is that it realizes 
toner in which several important functions required for the toner 
are shared among the core part and the shell part. The functions 
such as fluidity, tribo-charging, high durability, anti-coherent and 
anti-blocking properties, etc., are imposed on the shell part.1) 

In our previous paper, the charge impartation capability of 
CCA particles that form a shell layer on a C-S particle surface was 
studied.2) An interesting result was obtained that the shell layer 
containing the CCA particles determines the charge impartation 
capability of the C-S particles. The result suggests that the CCA 
particles existing on the shell surface can be regarded as the most 
effective charge imparting particles for the tribo-charging of the C-
S particles.  

In this paper, negatively and positively chargeable ultra-fine 
copolymer shell particles having a particle size of 3 to 100 nm 
were used to build the shell layers. It was confirmed that the ultra-
thin shell layers having a thickness of less than 20 nm completely 
cover the underlining core particle surface, and serve as accurate 
charge controlling shell layers. By selecting the shell particles, the 
polarity and the amount of charge are accurately controlled.  
Detailed results are mentioned below. 

Experimental 

Component materials for C-S particles 
As core particles, positively chargeable spherical mono-

disperse (PMMA) particles (Pc, diameter: 10µm) were used. As 
shell particles, negatively chargeable styrene-acrylic-acid 
copolymer particles (N, diameter: < 3 nm), positively chargeable 
trianilino-triphenyl methane sulfate particles (P1, diameter: < 100 
nm), and positively chargeable styrene-maleic-acid copolymer 
particles (P2, cationically modified, diameter: < 3 nm) were used. 
The chemical structure of N, P1 and P2 particles are given in Fig. 1. 
These particles were dispersed in water, and the pH of the 
dispersion was adjusted to a prescribed value. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.1 Chemical structure for three types of shell particles 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2 Structure of C-S particles prepar 
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C lass 1.  Single shell particles
Type C ore Shell             Particle nam es and com positions

particles particles
PCN    PC    N PCN  50, P CN 200, PCN  1K, PCN  5k, P CN 20k

PCP 1    PC    P1 PCP 1 50, P CP1 200, P CP1 1K, PCP1 5k, P CP1 20k

PCP 2    PC    P2 PCP 2 50, P CP2 200, P CP2 1K, PCP2 5k, P CP2 20k

C lass 2.  D ouble shell particles
Type C ore Shell             Particle nam es and com positions

particles particles
PCN P1 P CN 5k    P1 PCN P1 50, P CN P1 200, PCN P1 1K, P CNP 1 5k, PCN P1 20k

PCN P2 P CN 5k    P2 PCN P2 50, P CN P2 200, PCN P2 1K, P CNP 2 5k, PCN P2 20k

The symbol "1 Kppm" means 1,000ppm.

C-S particles 
Fig. 2 shows the structure of two classes of C-S particles 

prepared for this experiment. Class 1 consists of three types of 
single shell particles, PcN, PcP1 and PcP2, in which N, P1 or P2 
particles form a single shell layer on the Pc core surface 
respectively. Class 2 consists of two types of double shell particles, 
PcNP1 and PcNP2, in which P1 or P2 particles form an upper shell 
on the PcN single shell C-S particle surface, respectively. 

Table 1 shows the names and compositions of C-S particles of 
various types. The shell names consist of shell structure and shell 
composition. As for the particle name PcN 50, for example, PcN 
stands for the structure of single shell C-S particles (see Fig.2), and 
the figure 50 shows, in term of ppm, the amount of N particles that 
form the shell layer on the Pc core surface. Here, 1 ppm of shell 
particles corresponds to 10-4 wt% of particles per unit weight of 
core particles. For the preparation of the double shell C-S particles, 
PcN 5k single shell C-S particles were used as the core particles. 

Table 1 Name and composition of C-S particles prepared 
 
 
 
 
 
 
 
 

 
 

Process for C-S particle preparation 
As a typical example, a process for preparing PcN single shell 

C-S particles is mentioned below. A batch of 10 g of Pc core 
particles was mixed with 20 g of de-ionized water (DIW) 
containing 15 mg of sodium dodecylbenzensulfonate. Further, 170 
g of DIW was added to the mixture. The temperature of the 
mixture was adjusted to 50ºC. The mixture was agitated 
vigorously, and a prescribed amount of N particle dispersion was 
added. Then, 0.1 N hydrochloric acid was added dropwise to 
adjust the pH of the mixture to 4.0. Mixing was continued for 30 
min to form the N particle shell layer on the Pc core surface. The 
mixture was then cooled to room temperature to obtain the PcN 
single shell C-S particles. The resultant particles were washed with 
DIW by means of decantation. A wet cake of the PcN particles 
was obtained through filtration. The cake was left at 50ºC for 24 h 
to obtain a dried PcN particle sample. 

SEM observation 
The surfaces of all C-S particle samples in Table 1 were 

investigated by SEM observation. 

Tribo-charge measurement 
The amount of tribo-charge q/m was measured by the blow-

off method complying with the standard measurement procedure 
stipulated by ISJ.3) 

 
 
 

Results and Discussion 

SEM observation of C-S particles 
From the SEM observation, it was confirmed that the surface 

smoothness of the C-S particles was affected by the amount of 
shell particles which formed the shell layer on the C-S particle 
surface, and by the size of the shell particles. All the PcN, PcP1 
and PcP2 single shell C-S particle surfaces that were formed from 
50, 200, 1k and 5 kppm of N, P1 and P2 shell particles, respectively, 
were maintaining almost the same smoothness as that seen on the 
Pc core particle surface. 

Fig. 3 shows the selected SEM photographs of three types of 
single shell C-S particles that were formed with 1k, 5k and 20k 
ppm of N, P1 and P2 shell particles. The photographs clearly show 
that, in the case of the PcP1 20k particles which was formed from 
20 kppm of P1 shell particles, the surface is remarkably rougher 
than those of two other types of C-S particles. The result 
presumably comes from the larger particle size P1 particles; P1 
particles (diameter; 100 nm), which are 30 times larger than the N 
or P2 particles (diameter < 3 nm), tend to coagulate during the 
precipitation and form the remarkable rough surface on the Pc core 
surface. The result suggests that the smaller size shell particles are 
an important factor to obtain the smoother C-S particle surface. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig.3 SEM photographs of three types of single shell C-S particles 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.4 SEM photographs of three single shell C-S particles after mixing with 
carrier particles 
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SEM observation after mixing with carrier particles 
The SEM photographs of PcN, PcP1, and PcP2 single shell C-

S particles after mixing with carrier particles for 32 min. are 
shown in fig.4. It is remarkable that the surfaces of all three types 
of C-S particles are turning into smoother surfaces by the mixing 
operation with the carrier particles. 

Tribo-charging characteristics in PcN single shell 
particles 

Fig. 5 shows the tribo-charging characteristic curves of the 
PcN single shell C-S particles, indicating the amount of tribo-
charge q/m as a function of mixing time. When the characteristic 
curves are compared with the reference characteristic curve, which 
was obtained for the Pc core particles, all the curves shift toward 
the negative charge region. The amount of negative charge shift of 
the curves increases with the increase of the amount of N particles 
on the Pc core surface. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Tribo-charging characteristics for PcN single shell particles 

Fig. 6 shows the relationship between the amount of negative 
charge shift and the amount of N particles that form the shell layer 
on the Pc core surface. The charge shift draws to an end when the 
amount of N particles on the Pc core surface exceeds 5 kppm. The 
ultimate amount of negative charge shift to be obtained from the 
PcN particles with more than 5 kppm of N particles is estimated to 
be about −70 µC/g. 

 
 

 
 
 
 
 
 
 
 
 
 

Fig.6 Relation between amount of negative charge shift and amount of N 
particles on the Pc core surface. 

According to the ideal model for the PcN particles, the 
amount of N particles required to completely cover the Pc core 
surface is calculated to be about 1 kppm. However, the amount of 
N particles that is necessary for realizing charge shift saturation, 
which is considered to achieve a complete coverage by the shell 
layer in real PcN particles, is estimated to be larger than 2 kppm, 
since the experimental result of fig. 6 shows that, in the case of 

real PcN particles, the shell layer is formed form the coagulated N 
particles and require an incresed amount of N particles to cover the 
whole Pc core surface completely.  

In Fig. 5, the amounts of tribo-charge q/m on PcN particles 
with more than 5 kppm N particles stay constant and show only a 
small variation with the mixing time. The result appears to come 
from the fact that the shell layers formed from N particles are 
durable enough even mixed with carrier particles for a prolonged 
time of 32 min. 

Tribo-charging characteristics in PcP1 single shell 
particles 

Fig. 7 shows the tribo-charging characteristic curves of the 
PcP1 single shell C-S particles. When the characteristic curves are 
compared with the reference characteristic curve, which was 
obtained for the Pc core particle, the curves obtained by using the 
PcP1 50, PcP1 200, and PcP1 1k particles shift slightly toward the 
positive charge region. However, the curves obtained from the 
PcP1 particles which were formed from 5k and 20 kppm P1 
particles shift toward the negative charge region. The results may 
relate to the large, brittle and coagulated P1 particles that cover the 
Pc core particle surface. During the mixing operation with carrier 
particles, the coagulated P1 particles may be easily peeled off and 
transfered to the carrier particle surface to reduce the amount of 
tribo-charge q/m. This tendency is remarkable for the PcP1 
particles with more than 5 kppm of P1 particles. As shown in the 
SEM photographs in Fig.4, the large coagulated P1 particles on the 
PcP1 20k particle surface are thoroughly removed off after 32 min 
mixing with the carrier particles. 

 
 

 
 
 
 
 
 
 
 
 
 

Fig.7 Tribo-charging characteristics for PcP1 single shell C-S particles 

Tribo-charging characteristics in PcP2 single shell 
particles 

Fig. 8 shows the tribo-charging characteristic curves of the 
PcP2 single shell C-S particles. When the characteristic curves are 
compared with the reference characteristic curve, which was 
obtained for the Pc core particle, all the curves shift toward the 
positive charge region. The amount of positive charge shift of the 
curves increases with the increase of the amount of P2 particles on 
the Pc core surface. The charge shift almost comes to an end when 
the amounts of P2 particles on the PcP2 particle surface exceed 5k 
ppm; in Fig. 8, the amounts of tribo-charge q/m on PcP2 particles 
which have the P2 particles of more than 5 kppm are kept at 
35µC/g and show little change with the mixing time.  

The results show that the shell layers formed from P2 particles 
maintain enough durability even mixed with carrier particles for a 
time as long as 32 min. 
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Fig.8 Tribo-charging characteristics for PcP2 single shell C-S particles 

Tribo-charging characteristics in PcNP1 double 
shell particles 

Tribo-charging characteristic curves of the PcNP1 double 
shell particles are shown in Fig. 9. When the characteristic curves 
are compared with the characteristic curve of PcN 5k particles (see 
Fig. 5), which are used as a core to prepare the PcNP1 double shell 
particles, all curves shift toward the positive charge region. The 
amount of positive charge shift increases with increase of the 
amount of P1 particles on the PcN 5k core surface.  

It seems that the coagulated and brittle P1 particles on the 
PcNP1 particle surface affect the charging characteristics of the 
PcNP1 particles; in the SEM photographs for a PcNP1 20k particle 
in Fig. 4, the coagulated P1 particles on the surface are thoroughly 
peeled off after 32 min mixing with carrier particle. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.9 Tribo-charging characteristics for PcNP1 single shell C-S particles 

Tribo-charging characteristics in PcNP2 double 
shell particles 

Fig. 10 shows the tribo-charging characteristic curves of the 
PcNP2 double shell particles. When the characteristic curves are 
compared with the characteristic curve of PcN 5k particles (see Fig. 
5), which are used as a core to prepare the PcNP2 double shell 
particles, all curves shift toward the positive charge region. The 
amount of positive charge shift increases with increase of the 
amount of P2 particles on the PcN 5k core surface. The charge shift 
almost draws to an end when the amounts of P2 particles on the 
PcN 5k core surface exceed 5k ppm. The ultimate amount of 
positive charge shift at 32 min mixing time, which is obtained 
from the PcNP2 particles with more than 5 kppm of P1 particles, is 
estimated to be about 100 µC/g. 

The tribo-charging characteristic curve obtained from the 
PcNP2 5k particles nearly coincide with the curve obtained from 
the PcP2 5k particles (see Fig.8). The fact shows that, in the PcNP2 
double shell particles, the tribo-charging characteristics are 
determined by the charging characteristics of the top shell formed 
from the P2 particles. 

As shown in Fig. 10, the amount of q/m on the PcNP2 
particles with more than 5 kppm P2 particles keeps a value of +35 
µC/g and shows little variation with the mixing time. The result 
probably comes from the fact that the top shell layer formed from 
the P2 particles persists even mixed with carrier particles for 32 
min. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.10 Tribo-charging characteristics for PcNP2 single shell C-S particles 

Conclusion 
 Using the particle size of less than 3nm copolymer shell 

particles, C-S particles with an ultra-thin shell layer having a 
thickness of less than 20 nm were prepared. The ultra-thin shell 
layer determines the tribo-charging characteristics of the C-S 
particles. By selecting the types and amounts of the shell particles, 
the polarity and the amount of tribo-charge are accurately 
controlled. Double shell particles in which an upper uniform ultra-
thin shell layer was formed on the single shell C-S particle surface 
were also prepared. The upper shell also determines the charging 
characteristics as seen in the shell layer in the single shell C-S 
particles.  

The results suggest that the ultra-thin shell layer will be a 
useful tool to investigate or control the surface structure and 
surface properties of the C-S particle surface. 
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