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Abstract 
De-agglomerated hydrophobized fumed silica is compared to 

corresponding traditional agglomerated fumed silica as an 
external additive for electrophotographic toners.  The first finding 
is that the Tribo-Electrostatic Charge (T-ESC) of toner treated 
with de-agglomerated silica is as strong as that with traditional 
silica after agitation.  Charge distribution analysis however 
indicates faster charge-up for de-agglomerated silica.  These 
characteristics apply for both milled conventional toner and 
chemically produced toner and are explained by the superior 
dispersibility of de-agglomerated silica. The shelf-life (storage 
stability) was also tested and demonstrated that de-agglomerated 
silica maintained performance under normal appropriate storage 
conditions.  

1. Introduction 
One certainty of the current market for high speed and high 

quality electrographic printing/copier machines is that as 
performance demands ratchet up so do requirements for superior 
raw materials used in toners.  A critical component to this 
evolution has been the development of various products based on 
silica, titania and alumina as electrophotographic developer 
external additives.  These additives act as powerful influences on 
the charging and flow for the developer; a behavior defined by the 
interplay of such fundamentals as the nature and size of the core 
particle and the degree and type of particle surface modification.  

This paper presents application data for another key 
parameter: agglomeration.  While all pyrogenic oxides: fumed 
silica, titania, and alumina exhibit nano-structured aggregation of 
primary particles, agglomeration is the result of softer inter-
particle interactions and is significantly influenced by the oxide 
surface modification.  On a practical level, the effectiveness and 
efficiency of breaking down agglomeration and dispersing the 
aggregates over the toner particle surface has a large impact on the 
ultimate performance and economy of a toner/external additive 
formulation.      

2. Experimental procedures 

2.1. Materials 

2.1.1. Core materials 
The surface modified fumed silica used, supplied by Evonik 

Degussa GmbH and NIPPON AEROSIL CO., LTD., was 
produced by familiar processes previously described [1].  The 
pyrogenic process to make fumed silica has great versatility and 
can produce average primary particle sizes ranging from 7 to 
approximately 100 nm [2].  In this study the average particle size 
is 12 nm in diameter [Table 1]. 

Table 1: BET and Particle Size of Fumed silica 

Product name BET surface 
area [m2/g] 

Primary particle 
size [nm]  

AEROSIL® 200 200 12 

2.1.2. Surface Treatment Agent 
Surface treated fumed silicas have long been used as toner 

external additives.  In earlier technology, the treated silica 
provided hydrophobicity to the toner particle and thereby ensured 
good powder flow.  It was soon apparent that surface modification 
also greatly influenced the nature, speed, and stability of tribo-
electric charging for toner and so a variety of reagents have been 
employed [3].  Of the three most commonly encountered:  DDS 
(dimethyldichlorosilane), HMDS (hexamethyldisilazane), and 
PDMS (poly-dimethylsiloxane) we will focus in this study on the 
last.  Additives with PDMS treatments are of interest because of 
their very high hydrophobicity but also present challenges from 
the nature of their agglomeration:  PDMS agglomerate particles 
tend to be large and their agglomeration forces tend to be greater. 

2.1.3. Aggregation and agglomeration 
It was recognized early in the development of the pyrogenic 

process that the powders formed were made up of complex 
structures resolvable to the submicron level.  The so-called 
primary particle of fumed oxides averages in size from 7 to 100 
nanometers depending on the manufacturing conditions, however 
these particles are always found in an aggregated state that is to the 
most part non-divisible.  Aggregates are characterized with strong 
forces between primary particles and typically average in size 
between 100 and 300 nanometers.   

There is another level of structure always encountered that is 
termed agglomeration.  Agglomeration is the result of weak forces 
between aggregates that nevertheless results in macro-structures 
ranging from a few to many microns in diameter.  This knowledge 
of structure is important since the utility of fumed oxides depends 
on the complete break-down of agglomeration and the 
homogeneous dispersion of aggregates.  Fortunately, this can be 
achieved by the external application of shear.  The dynamics of 
these structural changes can be examined by a laser scattering 
particle sizing technique further described in Section 3 below. 

In this investigation, regular agglomerated structure PDMS 
treated fumed silica, RY 200, and special process de-agglomerated 
grade, RY 200 L were used. The core particle, PDMS treatment 
type, and treatment level were all held constant for this study; only 
the agglomeration structure was changed. 
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Table 2: Surface treated external additives used for this 
investigation 

 RY 200 RY 200 L 
Core material/  

Surface 
Treatment 

AEROSIL® 200/  
PDMS 

AEROSIL® 200/ 
PDMS 

Agglomerate 
Structure 

Regular 
Agglomeration 

De-agglomerated 

BET  
[m2/g] 

110 110 

Bulk Density 
[g/L] 

ca. 40 ca. 20 

Carbon Content  
[wt%] 

5.0 5.0 

Hydrophobicity  
[%] 

> 98 > 98 

2.1.3. Toner formulations 
For this investigation 8 micron polyester negative black toner 

was blended with 1 wt% of the surface modified silica using a 
Henschel-type mixer.  

2.2. Methods 

2.2.1. Dispersibility (Particle size distribution) 
The particle size distribution of the dispersed external 

additive on a toner particle surface is a notoriously difficult 
measurement.  We sought an indirect means that could 
approximate especially the dynamic process of additive dispersion. 
In this method a sample of the additive powder is mixed in ethanol 
for ten minutes with a 300W Ultrasonic homogenizer and the 
particle size distribution is measured (Horiba Laser Scattering 
Particle Size Distribution Analyzer LA-920).  By carefully 
controlling the time and conditions for the samples in ethanol, the 
relative dispersibility can be judged. 

2.2.2. SEM analysis of toner mixtures 
A Scanning Electron Microscopy (SEM) image was used to 

check the dispersibility of fumed silica aggregates on the toner 
particle (Hitachi SEM SU8000, samples coated using an osmium 
plasma).  

2.2.3. Tribo-Electrostatic charge (T-ESC) 
T-ESC was measured using a blow-off type electrostatic 

charge meter (Kyocera Chemical TB-220).  A sample of toner (2 
g.) was combined with a non-coated ferrite carrier (48 g.) and 
agitated with a Turbula mixer.  All sample preparation and 
measurement was carried out in a constant temperature/constant 
humidity room.  

 
2.2.4. Charge distribution 

The charge distribution was determined with a q-test (Epping 
GmbH).  The toner formulation was agitated with non-coated 
ferrite carrier by Turbula mixer before measurement.  

3. Results and discussions 

3.1. Dispersibility 
Using our indirect technique to characterize dispersibility, we 

recorded the particle size distribution for the agglomerated silica in 
ethanol vs. that for the de-agglomerated silica [Figure 1].  The 
combined data plot clearly indicates that the de-agglomerated 
product (RY 200 L) can be dispersed more readily than the 
agglomerated (RY 200).  Note that the average particle size for the 
well dispersed de-agglomerated additive is between 100 and 300 
nanometers, the typical aggregate size.  This implies that the de-
agglomerated grade more easily disperses to the fullest extent 
possible.  Also note that the regular grade shows a significant 
fraction of agglomerated silica (i.e. particle fraction between 10 
and 80 micron) even after sonication.  If the sonication power or 
length of time is increased, the regular sample will be driven to the 
fully dispersed state too, so for the purposes of this study it is 
important to adjust the test conditions such that distinctions can be 
made.  

 
Figure 2 shows SEM images of toner mixed with 

agglomerated and de-agglomerated grades, respectively. The 
larger amount of external additive on the toner surface observed 

Fig. 1 particle size distribution

0
2
4
6
8

10
12
14
16
18
20

0.01 0.1 1 10 100
Particle size [micron]

Fr
eq

ue
nc

y 
[%

]

RY 200

RY 200 L

NIP25 and Digital Fabrication 2009     Technical Program and Proceedings 33



 

 

for the de-agglomerated sample is direct evidence of the superior 
dispersibility possible from de-agglomeration.  With matching 
formulations and mixing conditions, the regular agglomerated 
grade can result in free isolated silica whereas the de-agglomerated 
grade is fully dispersed on the toner surface. 

3.2. Charge stability and charge distribution 
Charge stability was evaluated by tribo-electrostatic charge 

and charge distribution as a function of agitation time [Figures 3 & 
4]. The plots show that while there is a difference in initial charge 
related to agglomeration, the differences are less distinct upon 
mixing.  This would be expected as the two samples have in effect 
the same formulation.  Importantly, the de-agglomerated grade 
clearly demonstrates tribo-charge stability, a sharper charge 
distribution, less wrong sign toner, and a faster charge-up.  

Fig.3 Tribo-electrostatic charge of toner with silica

-20

-15

-10

-5

0

0 5 10 15 20 25 30

Mixing Time (min)

T-
ES

C
 (μ

C
/g

)

RY200

RY200L

 
 

RY 200 L with toner

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

-10 -5 0 5
Charge q/d ［fC/μm］

Fr
eq

ue
nc

y

Fig.4 Charge distribution of toner

RY 200 with toner
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3.3 Stability of de-agglomerated silica 
A final, practical question arises whether de-agglomeration is 

itself steady or reverts to the original agglomerated state upon 
storage of the product.  The de-agglomeration technology 
represented here was tested by real-time storage and did not show 
re-agglomeration after two years under normal warehouse 
conditions.  All properties (physico-chemical analytical along with 
the measured dispersibility) remained unchanged.   
Further studies on the mechanism of de-agglomeration and re-
agglomeration remain for future research.  

4. Conclusions 
The agglomeration structure of fumed silica can be 

manipulated to benefit in superior external additives for 
electrophotographic toners.  While only one example was 
presented in this paper, this technology can be applied to a broad 
array of nano-structured materials.  The de-agglomerated product 
shows better dispersibility, faster charge-up behavior, less wrong 
sign toner, and sharper charge distribution than the regular 
agglomerated grade and similar charge strength.  Finally, under 
normal long-term storage the de-agglomerated product fully 
maintained its attractive properties.  
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