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Abstract 
Treated fine particles of metal oxides such as silica, titania, 

and alumina are commonly used in toner formulations to help to 
achieve the necessary level of toner free flow and trboelectrostatic 
charging.  In most cases such particles are treated with 
hydrophobicity imparting agents such as alkylsilanes or silicone 
oils and their charging characteristics reflect the acidity of the 
base oxide and quality of the hydrophobic treatment.  So far little 
has been reported on the effect of different chemical functional 
groups on charging characteristics of treated metal oxides.  

This paper describes the treatment and characterization of 
fine particles of aforementioned oxides with two types of functional 
silanes containing nitro groups and fluorine atoms.  Results of 
triboelectrostatic charge measurements demonstrate that both 
treatments significantly enhance negative charge and, in certain 
cases, greatly reduce tribocharge humidity sensitivity.  Observed 
charge enhancement parallels the amount of functional silane 
present on the surface.  Possible reasons for such behavior are 
discussed from the point of view of ion-transfer model of contact 
electrification and in conjunction with the available 
characterization data.  

Using external additives modified with nitro and fluorine 
containing functional groups may allow formulators to reduce the 
number of formulation components and provide extra flexibility to 
achieve the target performance. 

Introduction 
An external additives package is one of the major components 

of modern toner formulations.  Although polymeric nano-particles 
are utilized in some cases, most often hydrophobically treated 
nano-particles of silica, titania, or alumina are used as external 
additives.  The additives are applied to improve toner free flow, 
increase efficiency of toner transfer from OPC to paper, prevent 
agglomeration of toner during storage, and improve control over 
toner triboelectrostatic charge (tribocharge).  As a result of the 
ongoing technology shift towards smaller size polyester based 
toners produced via different polymerization methods, which 
sometimes can make the introduction of charge control agents 
(CCAs) into the toner difficult, the latter function of the external 
additives becomes more important.  External additives with 
tunable triboelectrostatic charge and minimal dependence of 
tribocharge on humidity and temperature of the environment are 
continually sought by formulators.   

It is important to note that mechanisms of tribocharging of 
dielectric materials are not fully understood and different 
explanations of this phenomenon have been proposed [1, 2].  It 

appears, however, that tribocharging of untreated metal oxides 
such as silica, titania, and alumina could be explained in terms of 
an ion transfer model and is determined by the acid-base properties 
of the metal oxide surface [3, 4].  Silica, for instance, is the most 
acidic out of these three oxides and it shows strong negative 
charge while alumina is slightly basic and its tribocharge is 
slightly positive.   

Typically, metal oxide particles used as external additives are 
treated with silanes (e.g., octyltriethoxysilane, hexamethyl-
disilazane) or with silicones (polydimethylsilicone oil) to make 
their surfaces hydrophobic.  Hydrophobic treatments reduce the 
amount of water adsorbed on the surface and, thus, decrease 
surface conductivity, which is one of the possible discharge 
mechanisms.  As a result, hydrophobicaly treated oxides charge 
higher than untreated metal oxides.   

Except for additives treated with amino functional silanes, 
little has been reported regarding tribocharge properties of 
particles treated with silanes containing different functional groups 
(e.g., mercapto, nitro, or trifluoromethyl group).  In this paper we 
report results of our study on the effect of treatment with silanes 
containing trifluoromethyl/nanofluorobutyl and nitrophenyl groups 
on the tribocharge of fumed silica and alumina.   

Experimental 
Materials.  All silanes used in this work were purchased from 

Gelest Inc. and were used as received without further purification.  
Fumed alumina, SpectrAl81™ surface area 80 m2/g, and fumed 
silica, CAB-O-SIL® LM-130 surface area 130 m2/g, are products 
of Cabot Corporation.   

General procedure for liquid phase siliane treatment of 
fumed alumina.  SpectrAl81™ fumed alumina was treated with 
a silane or mixture of silanes in isopropanol.  Ammonium 
hydroxide was employed to catalyze hydrolysis and 
condensation of the silane.  Treatments were conducted at 70 oC 
for several hours.  Treated solids were separated from the 
reaction mixtures, washed and dried in an oven at 100 oC for 
several hours. 
General procedure for dry treatment of fumed silica with 
silane/silazane.  CAB-O-SIL® LM 130 fumed silica was sprayed 
with desired amounts of water and fluorosilane/HMDZ mixture 
(different fluorosilane/HMDZ ratios were employed).  Fumed 
silica, fluorosilane, and HMDZ were thoroughly mixed and 
transferred to 2 L Parr reactor where the mixture was heated for 
several hours.  The reactor was allowed to cool down and treated 
powder was recovered.   

Sample characterization.  Carbon content was measured for 
all prepared samples using LECO-C200 analyzer.   
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In order to determine the amount of treating agent chemically 
attached to the surface, selected samples were extracted with 
toluene, dried in a vacuum oven at 120 °C and then analyzed for 
carbon content.  Results of carbon content analysis were used to 
calculate silane coverage on oxide surface.  

Samples treated with fluorosilanes, were analyzed for wt% of 
F while samples treated with silanes containing nitro groups were 
analyzed for wt% of N.   

To verify silane attachment modes 29Si CP MAS NMR 
spectra of selected samples were recorded.  

Water adsorption measurements.  Water adsorption 
isotherms of treated LM-130 fumed silica were measured at 25 °C 
using a dynamic vapor sorption balance from Surface 
Measurement Systems.  100 mg samples were dried in a glass vial 
in an oven at 125 °C for 30 min before the analysis.  Dried 
samples were loaded into the instrument immediately after briefly 
holding them under the Haug Point-Ionizer.  Data collection 
method included twelve 20 min steps at relative humidity values 
between 0 and 95 %.  

Zeta potential measurements.  Dispersions of treated 
alumina samples in methanol (0.5 wt%) were prepared.  The 
dispersions were sonicated for about 5 minutes in an ultrasonic 
bath before zeta potential measurement with a ZetaPLAS 
manufactured by Brookhaven Instruments Corporation (Holtsville, 
NY) using the technique of phase analysis light scattering.  
Mobilities were converted to zeta potential using the 
Smoluchowski equation. 

Tribocharge measurements.  Treated metal oxides (fumed 
alumina and silica) were milled to fine powders using laboratory 
grinder, and then formulated with polyester toner (conventional 
polyester black toner, size ~10 μm) in a laboratory blender for 3 
min.  The toner/additive ratio was: 98.5 wt% toner and 1.5 wt% of 
treated alumina; or 98.8 wt% toner and 1.2 wt% of treated LM-130 
fumed silica.  Mixing was conducted for approximately 20% of the 
time in order to keep the toner from heating above the glass 
transition temperature.  Developers were prepared by formulating 
2 wt% of the toner and 98 wt% of Cu-Zn ferrite based carrier 
coated with silicone resin (Powdertech Co., Ltd.).  All developers 
were conditioned overnight in a temperature/humidity chamber at 
18 °C/15% RH (LL conditions) or 30 °C/80% RH (HH 
conditions).  After conditioning developers were placed into the 
glass jars and charged by rolling jars for 30 min at 185 rpm on a 
roll mill.  Tribocharge measurements were done using Vertex T-
150 tribocharge tester.  Each measurement was repeated three 
times and the average is reported. 

Results 
Results of tribocharge measurements for fumed alumina 

particles treated with functional silanes.  It has been reported 
that titania and alumina show considerably less negative 
tribocharge than silica [3].  Untreated fumed alumina often has 
even slightly positive tribocharge.  Results of tribocharge 
measurements for fumed alumina treated with various silanes are 
summarized in Table 1.  The data show that, while all prepared 
samples have approximately the same number of silane molecules 
per nm2 of surface, tribocharge values span the range from 0 to 
close to -50 µC/g.   

Table 1.  Silane surface coverage and tribocharge data for 
fumed alumina samples treated with functional silanes. 

 
Treatments with silanes containing alkyl (OTES), 

benzoyloxypropyl (BPTMS), and p-tolyl (TTMS) groups afforded 
materials with close to zero negative tribocharge.  Treatment with 
silane containing trifluoromethyl group (TFTPMS) boosts 
tribocharge to -30 µC/g.  It is even more surprising, however, that 
treatments with silanes containing nitro substituted aromatic 
groups (DNPTMS and TESPNB) afford materials with even higher 
tribocharge.  

Figure 1 shows tribocharge data (LL conditions) for a series 
of alumina samples treated with the mixtures of DNPTMS and 
isobutyltrimethoxysilane (IBTMS) containing different ratios of 
the two silanes.  Data presented in Figure 1 show that tribocharge 
increase parallels the increase in number of DNPTMS molecules 
on the surface.   

 

Figure 1.  Relationship between tribocharge (LL) and surface coverage of 
fumed alumina with functional silane DNPTMS.  

While IBTMS only treated alumina (DNPTMS coverage = 0) 
exhibited a small negative charge, DNPTMS treatment increased 
the negative charge up to almost -50 µC/g, which is the highest 
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negative charge for treated fumed alumina that we were able to 
achieve so far.  
 

Results of tribocharge measurements for fumed silica 
treated with functional silanes.  Samples of CAB-O-SIL® LM-
130 fumed silica treated with the mixtures of 
hexamethyldisalazane (HMDZ) and a fluorosilane 
(CF3CH2CH2Si(OCH3)3 or C4F9CH2CH2Si(OCH3)3) taken at 
different ratios were prepared via dry treatment method and tested.  
Results of tribocharge measurements are shown in Figure 2.   

 
Figure 2.  Tribocharge at HH and LL conditions as a function of wt% of F for 
CAB-O-SIL LM-130 silica treated with fluorinated silanes. 

Interestingly, tribocharge of toner samples conditioned at low 
humidity and temperature (LL) shows no dependence on the 
amount of fluorine on the additive’s surface, while tribocharge 
measured for samples conditioned at high humidity and 
temperature (HH) increases significantly with the increase of the 
wt% of F on additive’s surface.  For instance, HMDZ only treated 
LM-130 exhibited HH charge of -36 µC/g while sample treated 
with nonafluorosilane shows charge of -65 µC/g.  As a result, the 
environmental humidity dependence of toner tribocharge is 
significantly reduced when highly fluorinated silica is used as an 
external additive.   

Water adsorption measurements.  Water adsorption 
isotherms were measured for all samples of LM-130 silica treated 
with mixtures of HMDZ and fluorosilane.  Two limiting cases 
representing isotherms for samples treated only with HMDZ and 
only with nonafluorosilane are shown in Figure 3.  These examples 
demonstrate that treatment with fluorosilane significantly reduces 
water adsorption in the range between 0 and 80% RH.   

The amount of water adsorbed by treated LM-130 silicas at 
20 and 80 % relative humidity verses wt% F is plotted in Figure 4.  
Strong linear correlations between these parameters are observed 
with R2=0.97 and 0.94 for LL and HH conditions, respectively.  

Discussion 
Data in Table 1 show that treatment with silanes containing –

Ar–NO2 or –CF3 groups substantially increases tribocharge of 

fumed alumina.  Since alumina treated with alkyl silanes without 
specific functional groups e.g., treated with OTES, has tribocharge 
close to zero, observed tribocharge increase is clearly due to the 
presence of –Ar–NO2 and –CF3 groups.  At the moment we do not 
fully understand the physics and chemistry behind this 
phenomenon.   

 
Figure 3.  Water adsorption isotherms for LM-130 fumed silica treated with 
HMDZ and nanofluorosilane. 

 
Figure 4.  Amount of water adsorbed by LM-130 silicas treated with HMDZ 
and fluorosilanes as a function of wt% of fluorine. 

Assuming an ion-transfer mechanism of tribocharging, 
several explanations could be speculated.  One possibility is that 
the acidity of uncondensed silanols, which are always present 
when di- or tri-functional silanes used for surface treatment, is 
higher in case of fluorosilanes than in case of alkylsilanes (OTES) 
due to the strong electron withdrawing effect of –CF3 or –C4F9 
groups located two methylene carbons away from Si.   

Another possibility is that surface containing –CF2– and –CF3 
groups shows strong preference for hydroxide ion adsorption 
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(similar to what was reported for water/fluoropolymer interface) 
which is the cause for negative tribocharge [1, 5].   

Proton transfer mechanism also could be contemplated to 
explain tribocharge enhancement by –Ar–NO2 functionalities.  It is 
conceivable that hydrogen atoms of secondary amino groups 
present in both silanes, DNPTMS and TESPNB, are unusually 
acidic.  The possibility of an electron transfer mechanism also 
could not be ruled out in this case because aromatic compounds 
substituted with nitro groups may serve as good electron traps and 
can contribute to or possibly even dominate the charge transfer 
mechanism. 

It has been documented in the literature that tribocharge of 
metal oxides, minerals, and polymers tends to correlate with zeta 
potential [1, 3].  To check whether this correlation is applicable to 
materials prepared in this study, zeta potentials of several fumed 
alumina samples treated with different silanes were measured.  
Fumed alumina samples treated with different amounts of 
DNPTMS, TFPTMS, and IBTMS were tested.  Since these 
materials are hydrophobic, powder dispersions in methanol were 
used.   

Results of the measurements are shown in Figure 5.  It turns 
out that there is a fairly good correlation between the magnitude of 
zeta potential and tribocharge of alumina particles.  This result 
suggests that ion-transfer is likely to be the major mechanism of 
tribocharging for fumed aluminas investigated in this work. 

 

 
Figure 5.  Tribocharge (LL) of treated fumed alumina samples as a function of 
zeta potential.  Samples were prepared as dispersions in methanol. 

Figure 4 showed correlation between the amount of water 
adsorbed by fluorosilane treated LM-130 silica and fluorine 
content.  The data suggest that materials with higher fluorine 
content on the surface are more hydrophobic and adsorb less water 
at both high and low humidity.  The effect, however, is more 
pronounced at high humidity than at low.  This could be the reason 
why higher fluorosilane coverage on LM-130 silica rendered large 
tribocharge increase at high humidity conditions leaving 
tribocharge at low humidity essentially unchanged.   

Combination of low water adsorption and preferential 
adsorption of hydroxide ions on fluorinated surface are possible 
reasons for high tribocharge and improved humidity resistance of 
fluorosilane treated LM-130.  It is also should be noted that 
fluorosilane treated fumed silica showed excellent free flow 
properties when combined with toner.  

Another important factor that has to be considered when 
attempting to correlate tribocharge dependence with water 
adsorption is the manner in which the water is distributed on the 
surface.  Is the water film a continuous conducting network able to 
dissipate charge effectively or a series of isolated islands [1, 5]?  

 
The following are the principal conclusions of this study. 

(i) Series of samples of fumed alumina and fumed silica, treated 
with alkyl silanes, and silanes containing –Ar–NO2, –CF3 and –
C4F9 groups were prepared and characterized. 
(ii) It has been shown that tribocharge of alumina increases in 
parallel with the increase in the number of –Ar–NO2 groups on the 
metal oxide surface.   
(iii) Treatment of fumed silica with fluorosilanse affords materials 
adsorbing less water than materials treated with regular 
alkylsilanes.  Fuorosilane treated silicas show higher tribocharge at 
high humidity and, as a consequence, have lower tribocharge 
humidity sensitivity. 
(iv) Results of zeta potential measurements suggest that despite the 
big difference in the nature of –Ar–NO2 and –Rf groups, ion 
transfer mechanism of tribocharging of treated metal oxides is 
likely to be involved in both.  
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