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Abstract 
During xerographic development, charged toner particles are 

removed from the developer by the latent electrostatic image, and 
are replaced by uncharged dispensed toner particles. As a result, 
the total toner population in a developer contains charged 
incumbent particles and uncharged added particles.  To maintain 
image quality, the latter toner particles must rapidly charge-
equilibrate with the already-charged toner particles in the 
developer.   As outlined in the present paper, a conceptual charge-
admix model  based on a direct graphical analysis can  provide  a 
clear picture of toner-carrier and toner-toner charge-admix-
exchange processes. The model starts with the “perfect” charge 
admix case, and this is then used as a base for the development of 
a model  for atypical charge admix processes.  The model also 
describes toner charging performance from the initial developer 
charge-up step through the charge spectra of the final toner admix 
step. In this paper, predictions from the conceptual model are also 
reviewed for various levels of developer mixing and aging.  

Introduction 
In recent years, informative but complex theoretical models 

have been published for triboelectric charging 1 and charge  
admixing 2.    A series of detailed experimental studies has also 
been published 3-20, and a simplified version  of the theoretical 
triboelectric charging model has been used as a conceptual 
framework to provide a mechanistic understanding of triboelectric 
charging 6.  In this present report, the conceptual-based toner 
charging model is extended to include charge-admixing 
phenomena. 

Theory 

Toner Triboelectric Charging 
For a well-mixed two-component xerographic developer, the 

toner triboelectric charge (toner charge to mass ratio, q/m ) can be 
related to toner concentration, C, by 1: 

q/m = (A´/(C + Co)) · (φtoner – φcarrier)                    (1)  

where A´ and Co are constants, and φtoner, φcarrier represent the 
charging tendency of the toner and carrier particles.  

For an external additive toner, Eqn. 1 becomes: 

q/m = (A´/(C + Co)) · (θ·(μadditive – μtoner) + μtoner - φcarrier)     (2) 

where θ is the additive surface coverage, and μadditive  and  μtoner   
are the intrinsic charging tendencies of the additive and  the  base 
toner 6. (Toner aging frequently reflects a decline in θ with toner 
use).  

 

Toner-Toner Charge-Admixing 
Normally, the addition of uncharged toner particles to a 

charged developer reduces the toner charge-to-mass ratio, q/m. For 
example, for an increase in C from 4 wt% to 6 wt%, Eqn. 1 
predicts that the final reduced q/m value will be: 

q/m6% = q/m4%  ((4 + Co)/(6 + Co))                       (3) 

During a perfect admix event (identical added and incumbent 
toner particles), the added toner particles gain charge and the 
incumbent toner particles lose charge until both toner populations 
reach a common charge level 4. The change in toner charge with 
admix time, can be conveniently illustrated using  charging plots 
based on reasonable values for the parameters of Eqn. 2. For 
example, for a negative polarity toner (7μ diameter, 1.1 g/cc 
density), mixed with a 65μ steel carrier,  A´ = 110 μC/g. wt%.eV-1 
and Co = 1.5 wt%. For  θ = 0.8, a typical negative toner polarity 
can   be  generated   using   μadd = 0 eV,   μtoner = 2.5 eV and  
φcarrier = 3.0 eV    as model  values.     From    these    values,     
q/m = –50 μC/g at  C = 4 wt%,  and   –36.7 μC/g at C = 6 wt%. 

While the average q/m value of a toner can be readily 
measured via a total blow-off  tribo charge procedure, the results 
of charge admix experiments are best understood in terms of the 
entire toner charge spectrum.  From the spectrum, the individual 
charge contributions (toner charge-to-diameter, q/d)  from the 
added and incumbent toner populations can be assessed and 
monitored as a function of admix time.   For the example  shown 
in Fig. 1, the initially-uncharged added toner particles gain charge, 
and the incumbent toner particles lose  charge  during a perfect 
admix event, until both toner  populations reach  a  common  q/d  
level  of  -1.04 fC/μ  (i.e., -36.7/35.4 where 35.4 is the q/m:q/d 
conversion factor for  a 7 μ toner with a density of 1.1 g/cc).  
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Figure 1: Perfect  q/d response. 
(identical incumbent and added toner). 
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By contrast, if the charging properties of the incumbent toner 
particles become degraded during the initial developer mixing 
step, then charge-sharing between unaged, added toner particles 
and degraded, incumbent toner particles will produce an 
equilibrium bimodal charge spectrum.  For example, Fig. 2 shows 
the admix result for a model toner that has lost 50% of its initial 
surface additive. In this figure, the fresh, added toner gains a high 
negative charge and the charge of the aged, incumbent toner falls 
to a low negative value.   The root cause of this effect is the 
mismatch between the φtoner values for the  added toner (φadded toner=  
0.5 eV) and the incumbent toner (φincumbent toner = 1.5 eV). 

For the above examples, the q/d admix responses were 
calculated using a simple model, as described in the following 
section.  

Model Formulation 
To illustrate the charge admix process between fresh and aged 

toner particles,  nominal numerical values will be used for the key 
parameters. In this way, the charge-admixing relationships 
between  incumbent and added toner populations (of identical 

particle size) can be directly displayed in a simple graphical form, 
and these relationships can then be used to develop deterministic 
equations for the charge admix process.  In particular, the model 
relationships for the perfect admix case can be  extended to  
include the effects of an  atypical admix process. 

Fig. 3 shows the q/d responses for the case of an atypical 
charge admix created by an age-induced increase in φincumbent toner .   
In this plot, the post-admix q/d value of –0.62 fC/μ at 6 wt% is the 
weighted sum of   –1.45 fC/μ  at 2 wt% and   –0.20 fC/μ at 4 wt% . 
As expected for a charge redistribution between 4 wt% of charged 
toner and 2 wt% of uncharged  toner, the   increase   in   q/d added is 
twice   the   decrease   for  q/d incumbent  (with the changes measured 
with respect to the aged toner admix  q/d weight  average value). 

 
Fig. 4 shows the  relationship between long-term, atypical 

admix   q/d values  (open square symbols).   In this figure,   the  
q/dweight  average value for perfect admix is taken as the reference 
value. The plot shows that the total change in q/dadded for atypical 
admix can be graphically viewed as the sum of a contribution for 
perfect admix (i.e., from an initial 0 fC/μ to –1.04 fC/μ) and an 
added toner-toner charge-sharing contribution (from –1.04 fC/μ to 
–1.45 fC/μ).    

With a reference value of the perfect admix q/dweight  average, 
Figure 4 also shows (in a negative toner sense) that the toner-toner 
charge-sharing increase in q/dadded is equal in magnitude to the 
decrease in the q/dweight average value at the total toner concentration 
of 6 wt%. Thus,  increases in q/dadded can be expressed in  terms of  
equivalent decreases in q/dweight average , and this is a useful result  
since  changes  in  q/dweight average can be directly expressed in terms 
of key parameters such as φtoner and φcarrier .   For example, the 
long-term, perfect admix weight average  q/dweight average can be 
calculated as: 

 
where A* =  A´/35.4  (for the q/m to q/d conversion). 
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Figure 2: Atypical q/d response. 
(aged incumbent and fresh added toner). 
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Figure 3: Atypical q/d response of added and incumbent toner, 
referenced against the average q/d. 
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Figure 4: Atypical q/d response of added and incumbent 
toner, referenced against  the average q/d for perfect admix. 

18 Society for Imaging Science and Technology



 

 

and  for  the  example  shown  in  Fig. 1, Eqn. 4   gives  a  value  of  
–1.04 fC/μ.     By definition, for the perfect admix case, this is also  
the  value  of  q/d added,∞ and   q/d incumbent,∞  . 

At the total toner concentration of 6 wt%, the change Δ in the 
q/dweight average,∞  value from the perfect admix to the atypical admix 
case will driven by a  charge exchange between the aged 
incumbent toner and the fresh added toner : 

Thus, from the graphical symmetry shown in Figure 4,   the 
q/datypical, weight average, ∞ and q/datypical, added, ∞  values for the atypical 
admix case will be: 

q/datypical, weight average, ∞ = PF - Δ                             (6) 
 and 

q/datypical, added,∞ = PF + Δ                             (7) 
 

where PF = is the q/dweight average,∞    for perfect admix, as given by 
Eqn. 4. 

After extended charge admixing, q/dweight average,∞   will be 
given by the weight-average sum of contributions from the 
incumbent and added toner populations: 

 
where Cadded, Cincumbent and Csum are the toner concentrations of the 
added toner, the incumbent toner and the total toner population, 
respectively. 

From Eqn. 8,  q/dincumbent,∞    can be deduced from the 
calculated q/dweight average,∞   and q/dadded,∞   values: 

 
If Eqn. 9 is rewritten in terms of the relationships listed in 

Eqns. 6 and 7,  then the result is as shown in Eqn. 10: 

 
and values of the β factor in Eqn. 10 are listed in Table 1 for 
various values of Cadd and Cincumbent. 

Table 1 
Cadd Cincumbent β 
1 4 1.5 
2 4 2.0 
3 4 2.5 
4 4 3.0 

From a mechanistic viewpoint, it is useful to expand the 
parameters of Eqns. 6, 7 and 10  into their component factors.  For 
example, the expression for  q/datypical, weight average, ∞ that is given in 
Eqn. 6 expands to: 

 

 
 
For q/datypical, add, ∞ , the expanded expression is: 
 
 

 
 
For q/dincumbent,∞ ,  the expanded expression is: 
 

 
As shown in  Fig. 2, the added and incumbent toner 

populations rapidly reach an initial common q/d value when the 
admix is atypical; by contrast, Fig.1 shows that the charge admix 
is slower when the process is perfect, even if the charge-sharing 
rate constant, r, is assumed to be identical for  both  types  of  
admixing. This observation indicates that a mismatch between the 
added and incumbent toner particles can actually be beneficial 
from a short-term, charge admix viewpoint. However,  the   initial  
common   q/d  value for  atypical charge admix is not an 
equilibrium  value, and the  q/datypical, incumbent   and q/datypical, added  
values continue to diverge  beyond this initial common q/d value, 
eventually reaching separate plateau values. Therefore, in practice, 
only a small degree of mismatch can be tolerated if the overall 
admix charge spectrum is to remain unimodal. 

Table 2 gives representative values for tcrossover (atypical 
charge admix) and tadd (perfect admix) for  model  toners  with  
φnew = 0.5eV, and φaged = 1.5eV. (φcarrier =3.0eV, A* = 3.11, 
Cincumbent = 4 wt% , Cadd = 2 wt%, Co = 1.5). 

Table 2 
ADMIX RATE 
CONSTANT 

ATYPICAL 
ADMIX 

PERFECT 
ADMIX 

r  (sec-1) t crossover  (sec.) t add   (sec.) 
0.01 52 685 
0.02 26 343 
0.05 10 137 
0.10 5 69 
0.20 3 34 
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Sample Model Predictions 
The expressions in equations 11-13 can be used to model a 

wide range of possible toner charge admix scenarios. For this 
present report, a limited number of illustrative examples will be 
presented.  In each model plot, the dashed line represents   q/dadded, 
the solid line q/dincumbent, and the thin line q/dweight average . 

External Additive and CCA Effects 
 While the loss of a surface additive can create toner 

aging, the magnitude of this type of toner aging will also be 
governed by the relative magnitudes of the μadditive and μbase toner 
terms, and this can have a large effect on the subsequent charge 
admix process.   
 

 

For example, Figs. 5 and 6 show the predicted developer q/d 
response for toners that differ in their charge sensitivity to surface 
additive loss.  Both figures show a range of additive loss from 0% 
to 75%, but (μadditive – μbase toner) = (0 – 2.5) eV = -2.5 eV in Fig. 5, 
and (μadditive – μbase toner) = (0 – 0.5) eV = - 0.5 eV in Fig. 6.  As a 
result, the pre-admix developer mixing  process in Fig. 5 produces 
a large decrease in q/dincumbent , and this creates a large divergence 
between the q/dincumbent and  q/dadded  values  during a  subsequent  
2 wt% into 4 wt% toner admix step. For a 75% loss of surface 
additive,   q/dincumbent is actually driven wrong-sign,  as shown in 
Fig. 7.   

By contrast, Fig. 6 shows only a minor decline in q/dincumbent  
during the developer mixing step (even for cases where there is a 
large loss of surface additive), and a 2 wt% into 4 wt% admix step 
shows only a minor difference between  q/dincumbent and q/dadded 
even for a 75% loss of surface additive (Fig. 8).  
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Figure 5: Toner q/d aging response for a low-charging base toner.
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Figure 6: Toner q/d aging response for a high-charging base toner.
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Figure 7: Charge admix response after 75% loss of external 
additive from a low-charge base toner. 
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Figure 8: Charge admix response after 75% loss of external 
additive from a high-charge base toner. 

20 Society for Imaging Science and Technology



 

 

The model toner shown in Fig. 5 is strongly dependent on the 
surface additive for its negative charge (μbase toner >> μadditive), so 
that φtoner, aged > φ toner,new as a result of surface additive loss   during 
the developer mixing process.  For the model toner shown in 
Figure 6,  μbase toner ≅ μadditive so that any loss of surface additive 
during the developer mixing step will have only a small effect on 
q/dincumbent .  (Of  course,  other toner properties such as powder 
flow, cohesivity, etc. will be affected by the loss of the surface 
additive).  

A difference between φincumbent toner and φadded toner can also be 
caused by batch-to-batch errors during the additive blending step 
of the toner production process (e.g., an incorrect weight or  
omission of the additive), or by use of a 3rd-party toner in place of 
an OEM toner. If an additive-free base toner is added to an 
additive toner, the added toner can be   driven  wrong-sign,  and 
q/d added ≠ q/dincumbent at all admix times. (If surface additive is 
transferred to the additive-free toner during the charge admix step, 
then the overall response will be more complex).   When  an  
additive toner is added to an additive-free toner, the added toner 
will be driven to a highly negative state, and the incumbent toner 
to a wrong-sign state. When a low additive toner is added to a very 
low additive toner, q/dadded ≠ q/dincumbent at all admix times,  but 
with the added toner at a low right-sign charge level.   

In theory, the addition of a charge-enhancing charge control 
agent, CCA, to a base toner should reduce the mismatch between  
μbase toner and μadditive, and hence reduce the level of  atypical charge 
admix for toners based on unstable external particulate additives. 
Additionally, CCA additives can also produce toner (and carrier) 
aging via CCA transfer between the toner and carrier particles, so 
that  it is possible that CCA’s may also  enhance  the charge-admix  
process by creating a small mismatch    between   φtoner, aged    and   
φ toner,new . Finally, the electrical conductivity of CCA particles has 
also been hypothesized as mechanism for CCA-enabled   toner 
charging 21, so that CCA’s might also be expected to facilitate 
toner-toner admix charging. (While the potential for atypical 
charge admix is set by the mismatch between the toner terms,  
φincumbent and φadded , the rate of toner-toner charge admix will be 
influenced by toner surface species that facilitate charge transfer 
(e.g., conductive or semiconductive species such as pigments, 
CCA’s, metal oxides, metal salts, adsorbed/absorbed water, etc.). 

Admix Toner Concentration Effects 
Since the charge admix of  fresh and aged toner particles 

involves toner-toner charge-sharing, the ratio of the added toner 
concentration to the incumbent toner concentration will have a 
strong effect on the overall process.  This effect is illustrated in 
Figs. 9-10, where 2 wt% and 0.5 wt%  of  toner are added to an 
aged toner. Note that the long-term q/dincumbent value approaches 
the q/dweight average  value as the added toner concentration decreases 
— i.e., even an aged toner can give a normal charge admix 
response (in terms of q/dincumbent) if the added toner concentration 
is kept at a low value (e.g., via   uniform, well-dispersed and 
efficient toner dispensing/in-blending).  

Conclusions 
While the aging of xerographic carrier beads is normally a 

long-term process, toner aging can occur on a much shorter print 
interval time scale. Besides the toner-based aging mechanisms 
outlined in this present report, other important toner aging factors 
include excessive mechanical forces within a development 
housing, and  variable printing modes (e.g., abrupt transitions 
between text and pictorial images).  

From a toner viewpoint, the major design challenge is the 
creation of a robust toner that functions in all modules of a 
xerographic printer (i.e., development, transfer, fusing and 
cleaning).  While charge exchange is a key element in triboelectric 
charging, perhaps a materials-based solution to atypical charge 
admix will involve toner additives/components that moderate the 
rate of charge transfer  from aged toner particles. 
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Figure 9: Addition of 2 wt% of fresh toner into a developer with 
4 wt% of aged toner (50% loss of external additive). 

Figure 10: Addition of 0.5 wt% of fresh toner into a developer 
with 4 wt% of aged toner (50% loss of external additive). 
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