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Abstract
Digital printing has begun to play a more significant role

in the current commercial printing market, and the demand for
accurate color reproduction has also increased. Nonetheless,
achieving wide selection of printable substrates imposes a lim-
iting factor on color accuracy for a printing press manufacturer.
The compromised solution is to only provide and maintain cer-
tain generic substrate ICC profiles based on the physical features
of substrates. The main concern for this approach is that it is very
difficult to establish a correlation between each substrate char-
acteristics and the chosen imaging process. We propose a non-
parametric approach by first sifting through a representative set
of substrate-specific ICC profiles. Design a feature dimension re-
duction algorithm based on the independent component analysis,
and we will be able to identify a small set of substrates achieving
the optimal generic ICC profile performance against investigated
substrates. At last, we will identify the important physical charac-
teristics of a substrate affecting the performance of the ICC profile
with respect to the selected imaging process.

Introduction
Digital printing has begun to play a significant role in the

current commercial printing market. Aided by the advances in
machine control and color management technology, the demand
for accurate color reproduction has also increased. The most ob-
vious approach to address this concern is to create an ICC out-
put profile of the intended substrate on the specific digital press.
Nonetheless, because of the wide variety of substrates, it is highly
desirable for a printing press to be able to image on as broad sub-
strate selections as possible. Hence, providing a substrate-specific
ICC profile for each intended substrate would impose a signifi-
cant burden on maintaining a digital press. Moreover, because the
performance of each substrate-specific ICC profile is intimately
tied with colorant selection, individual tone reproduction curve,
color-mixing characteristics, etc., any modification in the imag-
ing process might render the entire collection of substrate-specific
ICC profiles less accurate; on the other hand, continuing updating
each substrate-specific ICC profile is a very costly operation for
a press manufacturer. The compromised solution is to only pro-
vide and maintain certain generic substrate ICC profiles based on
the physical features of substrates, such as surface coating, weight
and thickness, substrate brightness, etc., denoted as the paramet-
ric generic substrate ICC profile approach. The main concern for
the parametric approach is that it is very difficult to establish cor-
relation between each substrate parametric feature and the chosen
imaging process due to complicated substrate/colorant interaction
and the vast varieties of available substrates.

In this paper, we propose a nonparametric approach to by-
pass the initial physical characteristics analysis by first sifting
through a representative set of N substrate-specific ICC profiles.

Each substrate-specific ICC profile can be characterized by a sub-
strate matrix, Micc

i ∈ ℜ836×3, i = 1 . . .N, with size, where 836
represents the number of unique color patches inside the IT8.7/3
standardized press characterization target, and the dimension of
the CIELAB color space is 3. This means that each substrate-
specific ICC profile resides in a hyperspace with dimensionality
being 2508. The objective is to identify clusters within the col-
lected data set, and each clustered substrate-specific ICC profiles
can be optimally represented by their centroid, Cicc

j , j = 1 . . .Nc,
where Nc is the number of clusters. No prior knowledge is as-
sumed with respect of the physical properties of each substrate.
In general, two algorithms are applicable to address this problem:
multidimensional scaling with predefined dissimilarity metric for
two substrate matrices and unsupervised learning. Since defining
a suitable dissimilarity metric is equally difficult as the original
problem, we choose to adopt the unsupervised learning approach.
We first design a feature dimension reduction algorithm based
on the independent component analysis [1, 2], and perform data
clustering in the feature space with much reduced dimensionality.
Furthermore, we will be able to identify a small set of substrates
from each cluster substrate set, denoted as generic substrates, that
achieves the optimal generic ICC profile performance against in-
vestigated substrates under the constraint of maximal number of
generic ICC profiles. At last, we will identify the importance
physical characteristics of a substrate affecting the performance
of the ICC profile with respect to the selected imaging process.

Nonparametric Generic Profile
Physical characteristics of substrates, colorant, and the cur-

rent state of the printing process all affect the color rendition
achievable on the selected substrate. Thus, achieving accurate
color reproduction not only requires a substrate-specific ICC pro-
file but also precise control of the printing press, colorant, and
substrate manufacturing process. Since it is unrealistic to contin-
uously maintain a valid set of substrate-specific ICC profiles in
a digital press, the digital printing industry is moving toward a
pragmatic solution by providing a small set of generic ICC pro-
files based on preselected physical characteristics of substrate,
such as surface coating, weight, surface color and roughness, etc.,
and in-line color re-calibration to achieve accurate color repro-
duction [3]. Nonetheless, a set of generic ICC profiles optimized
in terms of color reproduction accuracy among the qualified sub-
strates for a digital press will reduce or even eliminate the need for
color modification during the printing process, which, in turns, in-
creases the productivity.

Complete understanding of the physics behind the interac-
tion between the selected substrate and colorant in a specific print-
ing process will undoubtably solve the generic profile optimiza-
tion problem; however, the high complexity of physical interac-
tion between colorant and substrate poses a significant challenge
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to researchers [4]. We propose to tackle this problem with a non-
parametric approach. Let M̄icc

o be the average press characteristics
across all qualified substrates of the selected printing process, and
there exists Nf physical properties, {θ j| j = 1 . . .Nf }, that drive
the final press characteristics Micc

i away from M̄icc
o . Furthermore,

two assumptions are proposed to simplify the original problem:

A1: The amount of deviation from M̄icc
o is the superposition of

the effect from each individual physical feature θ j.
A2: The contribution from each physical feature θ j is linear.
A3: The contributions from {θ j| j = 1 . . .Nf } are mutually inde-

pendent.

As a result, we can formulate A1 and A2 into following equation:

Xicc
i = Micc

i − M̄icc
o = fi(θ j| j = 1 . . .Nf )

=⇒ ∑
Nj

j=1 fi j(θ j) =⇒
Nj

∑
j=1

hi jS
icc
j (1)

where fi represents the overall contribution from all physical
properties, {θ j| j = 1 . . .Nf }, on substrate i, fi j(θ j) contains only
the contribution from property θ j, and a constant coefficient hi j
and a basis matrix Sicc

j ∈ℜ836×3 are used to approximate fi j(θ j).
Reorder Xicc

i and Sicc
j into vector forms to be xi and s j with

the range space being ℜ2508×1, and Equation (1) can be rewritten
as follows:

xi =
[

s1 s2 . . . sNf

][
hi1 hi2 . . . hiNf

]t
. (2)

Denote

X =
[

x1 x2 . . . xN
]

(3)

S =
[

s1 s2 . . . sNf

]
(4)

H =

⎡
⎢⎢⎢⎣

h11 h12 . . . h1Nf

h21 h22 . . . h2Nf

...
...

...
...

hN1 hN2 . . . hNNf

⎤
⎥⎥⎥⎦

t

(5)

where N is the total number of substrates being analyzed. The
original nonparametric generic substrate ICC profile problem can
be recapitulated as the following matrix form:

X = SH +Λ (6)

where X ∈ ℜ2508×N , S ∈ ℜ2508×Nf , H ∈ ℜN×Nf , and Λ is the
additive white noise. S, H, and Λ are unknown.

Independent Component Analysis
We can treat X as the observed mixed signal matrix, S as

the source signal matrix (latent variables), and H as the mixing
matrix. Because Equation (6) is ill-posed with more unknown
variables than number of equations, it is essential to first impose
other constraints. For example, the singular value decomposition,
SVD, has been widely adopted by researchers to solve the ma-
trix decomposition, dimensionality reduction, and latent variable
analysis by imposing orthogonality constraint [5, 6]. X = UΣV t ,
where U and V are orthogonal matrices and Σ is a diagonal ma-
trix. Thus, we can define S = U and H = ΣV t . The imposed
orthogonality constraint also means that there exists no correla-
tion between two vector components, sα and sβ , in S; however,

this might be too restrictive to only allow θα and θβ to drive xi in
perpendicular directions. Based on A3, we propose to adopt the
independent component decomposition to estimate a separation
matrix W such that

Y = XW = S(HW ) → S. (7)

That is, the separation matrix W is the pseudo-inverse of the mix-
ing matrix H.

Let each source signal sα be a random process with its proba-
bility distribution being p(sα). The independent component anal-
ysis assumes that source signals are mutually independent. That
is,

p(S) =
Nf

∏
j=1

p(s j). (8)

Various loss functions have been proposed to measure the degree
of independence such as Kullback-Leibler divergence and high-
order statistics (Kurtosis) [1, 7]. In a linear system as Equation (6)
where xi is a linear combination of independent variables {s j, j =
1 · · ·Nf }, the probability distribution of xi, p(xi), will be closer to
a Gaussian distribution than any of p(s j) based on the Central
Limit Theorem. As a result, the measures of nongaussianity, such
as Kurtosis, can serve as an indirect metric for the level of mutual
independence [7]. In this paper, we adopt the Fast ICA fixed-point
algorithm with:

M̄icc
o =

1
N

N

∑
i=1

Micc
i (9)

which includes various physical features, such as surface coating,
substrate weight/thickness, whiteness, surface roughness, mate-
rial, etc. [2].

Generic Substrates
The first step before decomposing X is to estimate its rank,

Nr, via SVD, where Nr � N. Let X̂ be the projection of X onto
the subspace spanned by the first Nr singular vectors, and the fast
ICA algorithm results in the following decomposition:

X̂ = Ŝ†Ĥ† = Ŝ† [ h̄1 h̄2 · · · h̄N
]

(10)

where Ŝ† ∈ ℜ2508×Nr , Ĥ† ∈ ℜNr×N , and h̄i ∈ ℜNr×1. Hence, in
the feature space spanned by Ŝ†, substrate i can be numerically
represented by h̄i, of which dimension Nr is significantly reduced
from that of the original substrate-specific ICC profile space, i.e.,
2508. The difference between substrate α and β , δαβ , is defined
as follows:

δαβ = ‖h̄α − h̄β ‖2 (11)

where ‖ · ‖2 is 2-norm. As a result, we can begin to group neigh-
boring substrates into clusters in the feature space sequentially
[5]. Each cluster is denoted as one type of generic substrate. Let
GA and GB be two generic substrates with na and nb number of
substrates at clustering stage k, and the difference between GA and
GB, ΔAB, is defined as follows:

ΔAB =
1

nanb

na

∑
i=1

nb

∑
j=1

δ i j
ab. (12)
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Two generic substrates with the smallest difference are merged to
form a new generic substrate at stage k + 1. The ICC profile for
generic substrate A at each stage can be computed as follows:

M̄icc
A =

1
na

na

∑
Ai=1

Micc
Ai

(13)

where Ai contains the substrate indices assigned to generic sub-
strate A. Thus, all substrates are optimally represented by a group
of generic substrate ICC profiles at each stage. A clustering tree
is formed after completing the merging process. The final clus-
tering result will be obtained by pruning the clustering tree. Let
Δs = {Δ1 Δ2 · · · ΔN−1} be the merged distance during the clus-
tering process, and we can treat Δs as a stochastic process with
two hypotheses:

H0: Δi is measured from the same type of substrate.
H1: Δi is measured from different types of substrates.

We propose to adopt the Gamma distribution, Pg(x|μ,ν), to
model the null hypothesis, H0, and formulate the tree-pruning
problem as a one-sided interval estimation problem [8]. The
threshold η is set so that

∫ η
0 Pg(x|μ,ν)dx = 0.95.

At last, a short list of substrates are identified in each group
of generic substrate, denoted as Generic Substrate Prototypes, of
which color characteristics are closest to the corresponding M̄icc

A .
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Figure 1. Merging distance histogram and feature analysis.

Experimental Results
The 469 substrates printed via the electrophotographic pro-

cess are analyzed in our experiment, which include glossy-coated,
matte-coated, cast-coated, uncoated, and texture substrate sur-
face types. The weights of substrates range from 60 to 350
gsm. The measured media white points stored in each substrate-
specific ICC profile indicate that the L∗ ⊆ [88 98.1], a∗ ⊆ [−1 4],
b∗ ⊆ [−10 10]. Based on the extracted singular values as shown
in Figure 1, it can be seen that the singular value decreases be-
come slower beyond the eighth singular value. Hence, we set
Nr = 8, and the first six independent components are shown in
Figure 2, where coherent structures are observable. The cluster-
ing tree based on estimated Ĥ† is shown in Figure 3. Figure 1 also
indicates that the Gamma distribution satisfactorily approximates

the set of merging distance with estimated parameters μ = 3.66
and ν = 0.26. Hence, the result η = 1.87.

Table 1: Substrate Surface Classification
Class 1 2 3 4 5 6 7 8
Uncoated 24 26 6 0 28 11 33 7
Matte 1 1 53 2 2 9 69 26
Glossy 1 0 111 23 0 3 13 0
Texture 0 0 3 6 0 0 1 0
CastCoat 0 3 3 0 1 0 3 0

We can compare the nonparametric clustering result against
various physical features such as substrate surface, weight, thick-
ness, media whiteness, and resulted color gamut volume. Table
1 lists the substrate surface characteristics in each nonparamet-
ric generic substrate class. Although there exists crosstalk be-
tween surface types and generic classes, it appears that surface
type/coating plays a significant role in the resulted color charac-
teristics in the selected printing process. We can roughly classify
class 1, 2, 5 and 6 to belong to the ”uncoated”, class 7 and 8 as the
”matte coated”, and class 3 and 4 as the ”glossy coated”. How-
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Figure 2. The first six ICA bases.
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Figure 3. Substrate clustering tree.
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Figure 4. Color gamut and media white point correlation.

ever, Figure 1 suggests that the substrate weight and thickness
have little impact on the color characteristics in the electropho-
tographic print process. Our explanation is that the impact from
different substrate weight and thickness is mostly compensated
by the fusing process with different fuser settings. Figure 4 shows
the correlation between the nonparametric generic substrate class
and the color gamut volume and media whiteness. On average,
class 3 and 4 with more glossy coated substrates result in larger
gamut volume than the rest, and class 2 and 5 generic substrate
containing most uncoated substrates has the smallest color gamut
volume. It is worthwhile noting that the class 1 generic sub-
strate containing mainly uncoated substrates results in larger color
gamut volume than that of class 7 and 8 with mostly matte-coated
substrates. At last, while the substrate luminance L∗ shows little
correlation with the substrate class, the media color measured in
[a∗ b∗] serves a very useful separating feature to classify generic
substrates in the selected electrophotographic printing process.

Conclusion and Future Works
A nonparametric approach is proposed to address the generic

substrate classification problem, where ICA is first used to reduce
the dimensionality of the feature space, and 469 substrates printed
with an electrophotographic process are grouped into different
classes of generic substrates in the derived feature space. Our
analysis results in 8 classes of generic substrates, where discrim-
inating physical features include substrate surface, color gamut
volume, and media color. On the other hand, substrate weight
and thickness shows no correlation with generic substrate classes.
In the future, we plan to analyze the extracted independent com-
ponents and correlate with specific substrate physical characteris-
tics, and extend this algorithm to other printing processes such as
inkjet and offset printing processes.
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