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Abstract 
Different classification methods have been used to 

categorize the digital halftone algorithms and to help match the 
algorithms to the printer capabilities. The existing classification 
methods use the dot distribution, the dot generation process or a 
general description of the halftone pattern power spectra as 
basis for classification. Recent progress in understanding the 
interaction between the binary halftone patterns and the printer 
capabilities suggests that an optimal classification method may 
be based on the halftone pattern morphology. In this study, we 
review the existing classification methods, and introduce an 
alternative method based on the morphological similarities of 
binary halftone patterns. The method uses topological 
measurements of the halftone pattern to describe its 
morphology. The simplicity of the method permits its application 
to various areas of printing research such as printer 
characterization, toner deposition studies and development of 
printer models. As an example, we present a case study where 
we compared our proposed classification method with a 
commonly used method in their application to the development 
of a printer model. In this comparison our morphologically 
based classification method yielded improved printer 
predictions. 

Introduction 
After years of advancement, numerous halftone algorithms 

with diverse techniques have been invented and today halftone 
algorithm development continues to be an active research area 
[1, 2]. Concurrent with the development of the halftone 
algorithm techniques, various ad hoc classification methods 
came into use to fulfill the need of predicting the print quality of 
a given halftone algorithm and printer combination. There are 
many classification methods that evolved informally from the 
perspective of different authors, inevitably resulting in 
overlapping classifications. Our literature review identified three 
primary viewpoints under which the current classification 
methods may be grouped. These viewpoints are; classifications 
based on the halftone dot distribution, on the halftone dot 
generation technique and on the halftone dots power spectrum 
appearance.  

From the viewpoint of the halftone dot distribution there is 
one main method with two principal categories, clustered dot 
and dispersed dot [3, 4] Clustered-dot algorithms turn on 
adjacent pixels to form a growing dot, while dispersed-dot turns 
pixels on individually without grouping them into a larger dot. 
The terms amplitude modulation (AM) and frequency 
modulation (FM) are often used instead of clustered or 
dispersed-dot [5]. Each of these categories can be subdivided 

according to whether the halftone dots are placed in a periodic 
(ordered) or an aperiodic (irregular) pattern [6, 7]. Occasionally, 
halftone algorithms are classified as hybrid dot [8] or micro 
clustered [9]. These are other names that correspond to the 
aperiodic-cluster-dot category.  

From the viewpoint of the halftone dot generation 
technique we identify two main methods. The first method has 
two principal categories, adaptive or non-adaptive [10]. 
Adaptive refers to halftone algorithms that do direct calculations 
on the input image. The adaptive category is further subdivided 
into two subcategories, iterative and non-iterative. The adaptive-
iterative algorithms are those that carry out more than one path 
of calculations on the continuous tone image while the adaptive 
non-iterative completes only one path. The non-adaptive 
category refers to algorithms that use a designed halftone screen 
[11]. The second commonly used method classifies the halftone 
algorithms into three main categories, point processes, 
neighborhood processes and iterative processes [12]. The point 
process category refers to halftone algorithms for which each 
pixel of the halftone image is a function of only one pixel of the 
continuous tone image. In the neighborhood process category, 
each pixel of the halftone image is a function of a local 
neighborhood of the continuous tone image. In the iterative 
process category the final halftone image is attained after several 
passes through the continuous tone image. 

The final viewpoint is classification according to the 
halftone dots power spectrum appearance. The main 
classification method has two principal categories; blue and 
green noise. The blue noise category correspond to algorithms 
who’s power spectrum has minimal low frequency components. 
Ulichney recognized blue noise as a desirable spectral property 
of visually pleasant halftone patterns [13]. The green noise 
category corresponds to algorithms who’s power spectrum is 
composed mainly of mid range frequencies. Lau [14] recognized 
green noise as a desirable characteristic of halftoning techniques 
that resist the effects of printer distortions.  

In practice, the current halftone algorithm classification 
methods have limited utility because they only provide a vague 
idea of the printed output quality. Recent progress in halftone 
research advocates that the characterization of the texture of the 
halftone pattern is important for the quantitative assessment of 
halftone quality [15, 16, 17]. Ultimately, the quality of the print 
depends on the interaction between the morphology of the 
halftone dots and the non-ideal behavior of the printer [18]. 
Printing research in the areas of printer characterization, toner 
deposition studies and development of printer models often 
require testing sets of halftone patterns with an assortment of 
morphologies. The use of a new classification criteria based on 
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halftone pattern morphology would be useful for future progress 
in these areas. 

In the following section we describe a halftone pattern 
classification method based on its morphology, followed by an 
evaluation and an example of its implementation. 

Morphological Classification Method 
Our approach to the morphological classification of 

halftone patterns consists of three steps; topology analysis, 
principal component analysis (PCA), and cluster analysis.  

Topology Analysis 
In this step, we extract the morphology information which 

is stored in the underlying pixel structure and the neighborhood 
relationship between the pixels of the halftone pattern. The 
morphology measurements are calculated through a topology 
analysis [19] of the halftone dots, consisting of defining the 
pixel neighborhood, identifying the connected components, and 
calculating the morphology measurements shown in Table 1. 

We used a heuristic approach for selecting the morphology 
measurements. The first four morphology measurements on 
Table 1 ( wA , A , oN , P ) were selected because of their well 
documented effect on the average reflectance and the dot gain 
attributes of the printed image [14, 20]. The next two 
measurements ( eN , meN ) were selected because we found that 
they correlate well with the variance of the reflectance values of 
the printed image as illustrated in Figure 1. The following four 
measurements ( majL , minL , E , majθ ) capture information 
about the size, symmetry and spatial orientation of the halftone 
dots. We used a known pattern recognition technique [21] to fit 
an ellipse to the halftone dots. The final measurement ( vN ) is 
calculated from a voronoi tessellation of the halftone pattern and 
is an indirect measurement of the anisotropy of the pattern. The 
morphology information of each halftone pattern is arranged in a 
column vector xr  and collected in the feature matrix X as 
shown in Equation 1. 

[ ]n1 xxX r
L

r
=                         (1) 

Table 1 Morphological measurements used 

 
Figure 1: Euler Number vs. the variance of the reflectance values of the 
printed image for an error diffusion algorithm. 

Principal Component Analysis (PCA) 
The goal of the PCA [22] step is to eliminate any 

correlation that might exist between the morphological 
measurements of the feature matrix X. The data is transformed 
to the principal component basis by matrix multiplication 
(Equation 2) with the projection matrix P who’s rows are the 
principal components of X. Halftone patterns that have similar 
morphologies will be close in distance within the principal 
component space. 

 
PXY =                                           (2) 

Cluster Analysis 
The goal of the cluster analysis is to group each halftone 

pattern into a cluster with other halftone patterns of similar 
morphology. We chose a hierarchical clustering technique [23] 
because it restricts each halftone pattern to belong to only one 
class, and the final classes can be adjusted without recalculation. 
The outcome of the hierarchical clustering technique is a cluster 
tree that shows the relationship among the different halftone 
patterns. The cluster tree is built by calculating the distance 
between each pair of halftone patterns and then linking the 
halftone patterns that are closer together to form the clusters, as 
clusters are created, clusters at one level are grouped into larger 
clusters at the next level until a complete tree is formed. If the 
cluster tree represents the data well there will be a strong linear 
correlation between the cluster distances (cophenetic distance) 
and the original distances between the halftone patterns. This 
correlation is measured by the cophenetic correlation coefficient. 

Choosing a threshold value for the cophenetic distance 
defines the number of clusters. Although various techniques 
have been reported to assist in the selection of the threshold 
[24], this value should be selected by inspection of various 
cluster combinations given that the definition of a “good” 
morphological cluster is completely subjective.  

Testing the Method 
The classification method was tested with 132 binary 

halftone patterns from seven halftone algorithms representing a 

Symbol Description [22] 

wA  total area of dots weighted for different patterns 
of pixels within a 2x2 neighborhood 

A  average dot area 

oN  total number of dots 

P  total perimeter of dots 

eN  Euler number= total number of dots - the total 
number of holes  

meN  mean Euler number of dots 

majL  length of ellipse major axis  

minL  length of ellipse minor axis 

E  
Eccentricity the ratio of the distance between 

the foci of the ellipse and majL  

majθ  angle between the x-axis and majL  

vN  number of Voronoi vertices 
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wide range of halftone morphologies. The hierarchical clustering 
was evaluated with various combinations of distance metrics and 
linkage methods [22]. Results shown on Table 2 illustrate that 
the highest cophenetic correlation coefficient is obtained with 
the combination of the Euclidian metric and the centroid linkage 
method. This combination was chosen to build the hierarchical 
tree shown in the dendogram in Figure 2. In the dendogram, the 
x axis represents the halftone patterns with a cluster number and 
the y axis represents the cophenetic distance. The inverted U-
shape lines demonstrate the links between the clusters. 

Table 2 Cophenetic correlation coefficient for various 
combinations of distance metrics and linkage methods. 

 
The cophenetic distance threshold was selected by visual 

inspection of the halftone patterns. A group of observers 
evaluated the clusters at various thresholds and determined that 
a threshold value of 0.80 partitioned the data into 18 visually 
similar clusters. Figure 3 shows examples of two representative 
clusters obtained during testing. 
 

Figure 2: Dendrogram showing the top 30 clusters when characterized with 
the Euclidian distance metric and the centroid linkage method. 

Case Study: Application to printer modeling 
We developed an electrophotographic printer model on the 

premise that the printer is a texture transformation machine. The 
model consists of a feed-forward neural network (Figure 4) 
designed to map a parametric representation of the input 

halftone pattern texture ( mr ) into a parametric representation of 
the output texture ( nr ). Our focus is to illustrate an application 
of the morphology classification method, therefore details about 
the construction and selection of the texture parameters and the 
neural network architecture will be described in a future 
publication. The morphology classification method and the 
classification method based on dot distribution were used to 
select a set of halftone patterns to train the neural network. 
Selecting a training set according to the dot distribution 
viewpoint was challenging due to the lack of clear criteria to 
distinguish between the halftone patterns. We had to rely on 
engineering judgment to choose halftone patterns from the 
clustered-dot, dispersed dot and hybrid categories. In contrast, 
the selection of a training set using the morphology 
classification method was fairly simple. The training set was 
built by randomly selecting a member from each of the 18 
clusters obtained when using a classification threshold value of 
0.80. 
 

Figure 3: Two clusters obtained during testing. The top cluster groups 
patterns with non-connected, nearly equidistant pixels. The  bottom cluster 
groups patterns with small L-shape components and a diagonal slant 
character. 

Distance 
 
 

Link 

Euclidian Std. 
Euclidian 

City 
Block Mahalanobis 

Nearest 0.867 0.518 0.800 0.518 
Farthest  0.885 0.482 0.818 0.482 
Average 0.896 0.510 0.836 0.510 
Centroid 0.903 0.534   

Ward 0.852 0.410   
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Figure 4: A neural network printer model that transforms the input texture 
pattern mr into the output texture pattern nr . 

The neural network model was trained separately with each 
of the training sets. Once trained, the model was used to predict 
the reflectance statistics for an independent set of halftone 
patterns. The performance of the model was evaluated by 
calculating the linear correlation coefficient between the 
modeled and the measured values for each reflectance statistic 
(mean, variance and skewness). Table 3 shows an example of 
the correlation coefficient values obtained when modeling a 4x4 
pixel clustered dot pattern. Improved printer model predictions 
were obtained with the training set selected by the morphology 
classification method compared to the training set selected by 
the dot distribution method as supported by significantly higher 
correlation coefficient values.  

Table 3: Modeled vs. Measured Correlation Coefficients for 
various reflectance statistics. 

 Morphology  
Method 

Dot Distribution 
Method 

Mean 0.998 0.445 
Variance  0.978 0.743 

Skewness 0.904 0.638 
 

Conclusions 
We present a method for the classification of binary 

halftone patterns based on 11 morphological measurements. The 
method was used for the selection of a training set in a neural 
network printer model. Our results show that the training set 
selected by our alternative classification method yields 
improved printer model predictions compared to a training set 
selected by a classification method based on dot distribution. 
The method assures no overlap between classification groups 
and allows the user to easily adjust the final classes to match 
their specific application. The morphology classification method 
may find application in other areas of research such as; printer 
characterization and toner deposition studies.  
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