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Abstract 
Faithful printing of digital source images requires 

simultaneous control of solid patch colors (optical density - OD), 
and graphic element dimensions (dot gain - DG). In Electro-
Photography laser based printing, the dot-gain and the optical-
density are coupled through process parameters such as toner 
thickness. Decreasing the DG usually decreases the OD. Since OD 
deviations cause color shifts, OD calibration takes precedence 
over DG setting, thus limiting the possible values of the attainable 
dot gain. The latter is determined by the writing system and by 
variable consumable properties such as the toner charge density. 
Thus, the dot gain varies in time and between printers. This causes 
a print fidelity problem that manifests itself in variability of 
graphic element dimensions and instability of highlights in 
halftones.  

We present a novel method for resolving this problem using a 
locally-adaptive variable laser exposure that affects only selected 
dots on edges of elements, thus decoupling the OD and the DG 
controls. The solution we present consists of a template-based 
algorithm combined with a novel calibration mechanism for 
attaining zero DG. The results show ~50% improvement of the de-
facto resolution for graphics printing, and a reduced sensitivity of 
halftone patterns to press conditions. The new DG control, 
combined with existing color control, brings us significantly closer 
to print consistency across presses.  

Problem Description and Motivation 
One would expect a printing system to reproduce precisely the 
input digital image. This includes in particular color consistency 
and graphics fidelity. Although these seem to be obvious 
requirements, in real life they are not trivial to achieve. Two 
measurable parameters which define any printing system are the 
Optical Density (OD) of a solid patch and the Dot Gain (DG). The 
DG is defined as the difference between the coverage of designed 
(digital) patterns and the actual coverage on print. Thus zero DG is 
obtained when the designed and actual coverage are equal. The 
two parameters, OD and DG, vary in time and between 
presses/printers and must be controlled to keep print consistency. 
The OD setting takes precedence since it defines the baseline for 
the final result. Any color lighter than the solid coverage may be 
achieved by different coverage while the solid coverage is unique. 
In (Liquid) Electro-Photography - (L)EP systems the OD and DG 
are predominantly controlled by the developer voltage and laser 
power respectively[1]. The model described in [1] shows that for a 
given printing system and for a given OD, the range of DG 
attainable (or line width for the model) by varying these two 
parameters is limited, as illustrated in Figure 1. Hence, we cannot 
obtain zero dot gain for all selected values of the OD, in particular 
we cannot have zero DG for the conditions and requirements of the 
Indigo presses (red arrow range). DG variation is manifested in 

halftone dot-size variation causing color shifts, and graphics 
element thickness variations. For very small elements, including 
single halftone dots, DG variation causes instabilities, such as 
missing or broken elements for small DG and excessive 

granularity for large DG. Some of the problems caused by DG in 

Figure 2:  A schematic illustration for the effects of dot gain and 
small element instability.  
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Figure 1:  A schematic illustration of the attainable DG range as a function of 
OD. Note that there are OD values that do not permit a zero DG.  
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LEP have been addressed in the past[2]. The color-shift problem 
for halftone patches was solved through a lookup table (LUT) 
mechanism, compensating in advance for the dot gain in the digital 
domain. Such compensation cannot be applied to binary graphics 
(0% or 100% coverage). In addition, it cannot address the small 
element instability problem affecting small fonts and highlight 
halftones consisting of single dots.  

Figure 2 illustrates the effects of dot gain and small element 
instability on narrow diagonal lines. The uncertainty bars denote 
the range of actual printed widths corresponding to each nominal 
width. The dot gain is the mean bias of the printed width. Notice 
that the single pixel wide line has larger uncertainty, exhibiting 
instability artifacts such as line breaks. For single dots the 
instability is even larger. We refer to this effect as small element 
instability. 

In this paper we present a method to control the dot gain so 
that a graphic object would print exactly as digitally designed, 
except when it at danger of not being printed reliably. In such 
cases we protect it, and print it in the minimal stable size, as 
illustrated by the solid cyan line in Figure 2. The DG control also 
assures print consistency over time and between presses[3].  

Solution method 
The basic principle of our solution is to vary exposure only 

on selected pixels: edges of binary linework, and single halftone 
dots. Overall DG may be controlled by a constant laser power for 
all elements but, when constrained by a given requirement for OD, 
the range of attainable DG is limited. Our solution decouples 
between DG (measured on edges), and OD (measured on solid 
patches). Thus, we can select any desired DG independently of 
OD. 

For line work the solution has two components: real-time 
digital pre-processing, and offline variable-exposure calibration. 

The principle of the algorithm is tagging pixels as belonging 
to one of various classes: ‘Solid’, ‘Edge’, ‘Unstable’ and ‘special’. 
Tagging is done in real-time using simple template matching 
displayed schematically in figure 3.  

We tag the inside of solid patterns as ‘Solid’ indicating that 
these pixels will attain the nominal exposure.  

The tag ‘Unstable’ is given to sensitive pixels (e.g. single 
pixels and diagonal connection) indicating they need to be 
protected. The identification of sensitive pixels is done based on 

expert knowledge of the specific system and needs revisiting per 
different system types. Based on the same expert knowledge we 
may define some special cases (e.g. single pixel line and double 
dot) and later treat them specifically. The rest of the pixels are 
tagged as ‘Edge’, where the exposure value of ‘Edge’ is used to 
achieve the required (zero) DG via analog thinning. The 'Edge' and 
'Unstable' tags may be further refined into sub-tags.  

The half-tone single dots are tagged already in the screen 
data. By tagging the nucleus (first pixel) of halftone cells (in AM 
screening) as 'Unstable' we protect single-pixel highlight dots from 
vanishing, and improve print stability for larger dots. 

Offline variable exposure calibration maps the tags to laser 
exposures required to achieve the desired effects. 'Edge' calibration 
is done by printing a set of patterns with equal digital coverage and 
different spatial frequency. When DG is positive (negative) the 
higher frequency pattern is darker (lighter) since there is a larger 
portion of edge-pixels on this pattern. When laser exposure is 
calibrated to zero DG, both patterns appear to have the same gray-
level. 'Unstable' calibration is done using stable elements, e.g. for 
single dots it is done using single pixel wide lines at 45o. Their DG 
behavior is similar to that of single dots, but unlike the latter, 
diagonal lines are stably reproducible.  

Benefits and Results 
The locally adaptive variable exposure method presented here 

offers many practical benefits relative to traditional methods.  
The main benefit is high print accuracy and consistency for 

Figure 4:  Regular 800dpi printing without dot-gain control (left) versus 
dot-gain controlled printing (right). 

Figure 3  Sequential template matching algorithm for classifying and tagging binary line-art pixels according to their 3×3 neighborhood. Black is ‘on’ white 
is ‘off’ and X is ‘don’t care. Every template is taken as a collection of templates with all possible rotations and inversion. "Edge" is the default tag given to 
pixels that failed to match any of the templates..  
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line-work such as drawings and fonts, as demonstrated by Figure 
4. The right side is printed with zero-DG calibration, while the left 
side is a conventional print (uncalibrated DG). The input digital 
image is the same. It is clear that we obtained the desired zero-DG, 
since the thickness of the foreground and inverse fonts is the same. 
Note that the smallest foreground fonts are printed stably using 
thinner lines, which improves readability of these fonts due to 
reduced hole-filling.  Also note that printing small inverse fonts is 
impossible without DG control, as appears on the right side of 
Figure 3. Note that zero-DG provides press / printer independent 
fidelity.  

Another benefit is higher print resolution: As demonstrated 
in Figure 5, zero-DG enables separation between closely spaced 
digital elements (even one pixel apart), which was not possible 
before. Overall we deliver 50% improvement in the element 
separation resolution. 

For highlight halftones, we get the desired print stability 
and consistency. Figure 6 shows that DG control of small dots (on 
the right) stabilizes their size, thereby considerably reducing their 
sensitivity to press conditions. This results in a more consistent 
color reproduction, especially for highlight tones, and also 
simplifies the color calibration process. 

Discussion 
By applying a local real-time modulation we enable accurate 

and stable printing. This, in turn, ensures also press to press 
compatibility, using only a simple one dimensional calibration 
process. All of this was made possible using the variable laser 
exposure to decouple OD from DG by performing element-
dependent accurate dot-gain control.  
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Figure 6  Single pixel control 

Figure 5:  Resolution stars: regular 800dpi printing without dot-gain control 
(left) versus dot gain controlled printing (right). 
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