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Abstract 
Inkjet technology has shortened the processing time for 

current electronic components and minimizes material waste 
during their manufacture. Inkjet-printed nano silver ink IC 
interconnections are presented, but their reliability at varying 
temperatures as well as the evaluation of their reliability after 
humidity tests is not exhaustively explored. In this paper, we 
investigated the reliability of inkjet-printed interconnections from 
a variable environmental point of view. We tested nano silver 
inkjet-printed interconnections at 85ºC in 85% RH for 1,000 hours 
for humidity evaluation and for 1,000 cycles from -40ºC to 125ºC 
to investigate temperature-cycling-based failures in combination 
with JEDEC Test Standards. Greek cross-structure, which is 
commonly used in the semiconductor industry, was used to 
evaluate fluctuation of the conductivity value after variable 
environment conditions. On the basis of the measurements 
obtained, we related electrical values before and after the tests 
using the Greek cross-structure. Also, the printing resolution of the 
inkjet-printed structures and the effect of these structures on the 
environmental reliability in the mentioned test runs were 
evaluated. The results of the temperature cycling test and of the 
humidity test show that the inkjet-printed silver structures have a 
good degree of reliability.  

Introduction 
Recent research has been demonstrating the formation of an 

electrically conductive interconnection by inkjet printing 
technology and discussing the potential of the technology [1-12]. 
Fast processing of conductive lines, which is more effective than 
screen printing, represents one of the benefits of transferring the 
technology to mass manufacture [4]. In addition, this innovative 
manufacturing method comes with several advantages such as 
maskless production, savings in material and energy, fewer 
process steps, hardly any waste liquid during manufacture, low-
cost, and environmental impacts [1-12].   

Inkjet technology uses nanotechnology to expedite 
manufacture and save energy in producing interconnections of 
electronic circuitry. To implement new specifications, the 
electronic packaging industry has been increasing the packaging 
density and functionality to meet customer requirements [1-12]. 
Currently, the tasks to be critically investigated are the evaluation 
of the printing process steps and of inkjet-printed interconnections.  

In this paper, we investigated the reliability of inkjet-printed 
nano silver interconnections in various environments. Because of a 
gap in standardized reliability evaluation of inkjet-printed 
structures, we used several test standards that are well-known and 
widely applied in electronics. Similar select test conditions have 
been used by several other research groups in inkjet printing 
technology [7, 12]. In addition, using industrial standards enables 

comparison of test results and improves competence and 
knowledge in inkjet technology for mass manufacture.  

Materials Selection 
Nanoparticles are commonly being used in inkjet printing 

technology because of the advantages of lower sintering 
temperature and duration. This phenomenon is based on the 
“quantum size effect” [2, 13], which also helps meet particle size 
requirements for printhead nozzles. Another important requirement 
for suitable inkjet printing ink is nanoparticle stability in ink. The 
particle stability of the tested silver ink was controlled during 
formulation in a liquid vehicle consisting of ethylene glycol, 
glycerol, and ethanol (properties of the tested silver nanoparticle 
ink are shown in Table I).   

Table I. Properties of nanoparticle ink  
 Before  

sintering 
After  

sintering 
Particle size (nm) 30-50 - 
Metal content (wt%) 20 - 
Viscosity (mPa.s)  12-14 mPa.s - 
Specific resistance 
(µΩ.cm) 

- 5 

Thickness (µm) - ~2 
 
Inkjet printing technology enables printing on flexible 

organic substrates and rigid substrates that are commonly used in 
electronic manufacture, e.g. flame retardant 4 (FR4) or low 
temperature co-fired ceramic (LTCC), or even on paper [1-12]. 
The flexibility of the substrate enables here several interesting 
applications, e.g., e-paper, organic radio frequency identification 
(RFID) tags, and organic light emitting displays (OLED). In our 
experiment, we selected and tested several flexible substrates, i.e., 
polyethylene naphthalate (PEN), liquid crystal polymer (LCP), and 
Kapton polyimide (PI). The substrates differ in their engineering 
properties, e.g., dielectric constant, moisture absorption, and 
coefficient of thermal expansion (CTE) [14] (several selected 
properties of the tested flexible substrates are shown in Table II).  

Test Structure  
Commonly used in the semiconductor industry because it 

does not need dimensional information for measurement of sheet 
resistance [15], the Greek cross structure was selected here to 
measure the resistivity of inkjet-printed structures. A Greek cross 
circuit has four pads connected to each other at equal lengths and 
line width. The symmetrical structure compensates for contact 
resistance and provides reliable results. The structure was used in 
[16] to measure the sheet resistance and resistivity of inkjet-printed 
traces. The test structure was multiplied, and resistivity was 
measured of pad D to pad F (Figure 1 (b)). The distance between 

NIP24 and Digital Fabrication 2008 Final Program and Proceedings 387



 

 

the two pads allowed us to measure electrical fluctuation in a long 
line of about 10.5 mm and secure reliable results in case changes 
occurred under varying conditions.   

Table II. Properties of substrates  
 Polyethylene 

Naphthalate 
(PEN) 

Liquid 
Crystal 
Polymer 
(LCP) 

Kapton 
Polyimide 

(PI) 

Thermal  
expansion  
(CTE)(ppm/ºC) 

18-20 17 20 

Tensile 
strength (MPa) 

250 294 139-231 

Melting 
point (ºC) 

270 310 - 

Dielectric 
constant 

2.90 2.85 3.50 

Moisture 
Absorption (%) 

0.40 0.04 1.80 

 

                                            

                                                

                                     

                (a)                                             (b) 

Figure 1. (a) Greek cross test structure adopted from semiconductor industry. 
(b) Test structure of 4.5mm x 14.5 mm inkjet-printed on selected substrates; 
designed line width ~190 µm. 

 
A reliability test board consisting of 60 Greek cross structures 

in twelve rows for each substrate was inkjet-printed on PEN, LCP, 
and PI.  

Printing Process 
The Greek cross structures were printed with a piezo 

printhead type inkjet printer. A digital printing file of the structure 
was created on a computer-aided design (CAD) platform. Before 
printing, the substrate surfaces were wiped with isopropanol to 
clear them of dust and contamination and were then subjected to 
UV/Ozone surface treatment for 5 minutes [17]. Cleaning and 
modifying the substrate surface help control the droplets over the 
substrate. In addition, an electronic coating allows also printing of 
highly aligned and narrow conductive lines or wide and thin 
patterns [1, 17, 18].  

The cleaned substrates were placed on a metal substrate 
holder plate under the industrial inkjet printer. Because the 
printing file resolution affects the conductive interconnections, two 
different printing resolutions were evaluated, i.e., 600 dpi (dots-
per-inch) and 1550 dpi. With an industrial-type inkjet printer, high 
resolution printing poses some challenges. A major problem we 
encountered during printing was bulking of droplets. Image 
masking, which also affects the long term reliability of printed 
structures, makes it possible to achieve adequate surface quality in 

printing multi-layer structures [1]. Furthermore, high resolution, 
which determines the amount of silver ink deposited on the 
substrate, increases the amount of the ink and consequently the 
reliability of the structures. In high resolution printing, also 
electrical conductivity will be high.     

On the other hand, it is important to evaluate the repetition of 
printed layers to understand the electrical performance and surface 
quality of inkjet-printed structures [19, 20]. We evaluated four-
layer printing with 600 dpi and single-layer printing with 1550 dpi 
and printed similar pattern formations, which showed that the 
same amount of ink was printed on both substrates (Figure 2). 
From this experiment, we chose the four-layer printing with 600 
dpi for the following reliability test.        
 
 
 
 
 
 
 
 
                                  (a)                                             (b) 
Figure 2. (a) 600 dpi resolution, 4-layer printing (b) 1550 dpi resolution, 
single-layer printing. With both resolutions, interconnection line width 
measured ~190 µm. 

Reliability Test Procedure 
The inkjet-printed silver structure should be integrated to 

evaluate the reliability of such structures in varying temperature 
and environmental conditions [18]. Such an accelerated life test 
usually accelerates the failure mechanism, which again facilitates 
detection of failures much sooner than in regular service 
conditions [21]. High humidity and high temperature tests were 
run to identify possible material-related failures in harsh 
conditions. 

In this study, we used the standardized test methods [22, 23] 
by JEDEC to determine the humidity-related and temperature-
variation-related problems of our inkjet-printed silver structures. 
The conditions for each test were as follows:  

• In the humidity test, 85ºC and 85% relative humidity 
(RH) was applied for 1,000 hours. According to the 
supplier, fluctuation in the humidity chamber was ± 0.3ºC 
and ± 2.5% RH. The electrical performance of the 
samples was measured at every 250 hours. 

• In the temperature cycling test, -40ºC to 125ºC for 1,000 
cycles was used with a cycle set at 30 minutes. The 
electrical performance of the samples was measured at 
every 250 cycles.     

 An important parameter that may directly affect reliability 
results is the selection of the sintering profile of inkjet- printed 
samples. In this experiment, test samples were sintered at 220ºC 
for 60 minutes.  

Results  
Silver nanoparticle ink with 600 dpi resolution was inkjet-

printed in four layers on PEN, LCP, and PI substrates. The inkjet-
printed samples were cured at 220ºC for 60 minutes, and their 
electrical resistance was measured. The samples were then placed 
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in a humidity and a temperature cycling chamber for further tests 
(results shown in Figures 3 and 4).  

 
 
 
 
 
 

 
 
 
 
 
 
Figure 3. Changes in resistance performance during temperature cycling at  
-40ºC to 125 ºC.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Changes in resistance performance in humidity test at 85ºC and 
85% RH.    
 

Our temperature cycling and humidity results showed similar 
trends in resistance. The inkjet-printed structures showed slight 
electrical fluctuation at varying temperatures and constant 
humidity. For temperature cycling, the resistance varied depending 
on the tested substrate from ~5-6% and for humidity ~3-6%. In the 
latter test, moisture affected the PEN and LCP substrates more 
than the PI substrate, which, though capable of absorbing more 
moisture than the others, may have been affected by the printing 
process. Silver droplets may have spread better on PEN and LCP 
than on PI during printing process. Hence the forming thinner and 
mechanically weakly bonded silver droplet structures on PI 
occurred against moisture absorption and some micro cracks 
(Figure 6) based on the thermal changes is noticed.    

In temperature cycling, the substrates’ coefficient of thermal 
expansion (CTE) was so close as to yield a similar change in 
resistance performance. Figure 5 shows several optical microscope 
pictures of inkjet-printed structures on PEN, LCP, and PI 
substrates.     

Measured after the environmental tests, resistance showed no 
significant increase. In addition, the structures did not degrade or 
show any corrosion-related failure during the tests.  Visual 
observation was done with a scanning electron microscope (SEM), 
and an energy dispersive x-ray spectrometry (EDS) was used for 
elemental analysis of the samples on selected sections. In x-ray 
spectrometry, the highest peak was registered from Ag L α energy 
level. Results showed no oxidation during the tests on these inkjet-
printed silver structures.  
 

 
 

 
 
 
 
 

             (a)                                (b)                                (c) 
 
 
 
 
 

 
             (d)                                (e)                                (f) 

 
Figure 5. Microscope pictures of the selected samples. First row: temperature 
cycling samples after 1,000 cycles from -40ºC to 125ºC; (a) LCP, (b) PEN, 
and (c) PI.  Second row: humidity test samples after 1,000 hours; (d) LCP, (e) 
PEN, and (f) PI. 

        
                      (a)                                            (b)            
 
 
 
 
 
 
    
                      (c)                                            (d)            

        
                      (e)                                            (f)            

Figure 6. SEM pictures of the samples. First row: temperature cycling 
samples after 1,000 cycles from -40ºC to 125ºC; (a) LCP, (b) PEN, and (c) PI.  
Second row: humidity test samples after 1,000 hours; (d) LCP, (e) PEN, and 
(f) PI. 

Conclusions 
Nanoparticle-based silver ink was inkjet-printed on several 

flexible substrates, namely PEN, LCP, and PI, and their electrical 
performance was examined under several test conditions. 
Resistance measurements in a humid environment of 85ºC/85% 
RH and in temperature cycling from -40ºC to 125ºC showed no 
significant fluctuation in the resistance of the tested samples. The 
resistance of the humidity and temperature cycling tested samples 
were measured and their fluctuation determined at ~3-6% and ~5-
6%, respectively. Though the structures were created with low 
resolution in four-time printing, the higher resolution printing 
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deposited an equal amount of material. The reliability of the 
structures was evaluated based on the lower resolution printing.    
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