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Abstract 
During the operation of a magnetic two-component develop-

ment system used in electrophotography, some carrier particles 
adhere to a photoreceptor surface and cause serious image de-
fects. This phenomenon is called "bead-carry-out" or "carrier de-
velopment." The author has observed the phenomenon using a 
high-speed CCD camera and has measured the number density of 
carrier particles that adhere to the photoreceptor surface after the 
development process under various conditions of the development 
voltage, toner particle concentration, and size of the carrier par-
ticles. The experimental results indicated the following characte-
ristics. (1) Some particles were separated from the top of bead 
chains immediately after the chains separated from the photore-
ceptor at the outlet of the development nip. (2) A threshold voltage 
existed for the occurrence of bead-carry-out. (3) The threshold was 
low when the diameter of the carrier particles was small and the 
toner particle concentration was low. (4) The number density of 
the adhered carrier particles increases with an increase in the ap-
plied voltage and a decrease in the toner particle concentration. It 
has been clarified by a separate experiment that the effective con-
ductivity of the bulk mixture of carrier and toner particles was sig-
nificantly related to these characteristics. Because the carrier par-
ticles are conductive and toner particles are insulative, the latter 
disturbs the electrical conduction in the chain, and therefore, the 
electrical charge at the top of the chain induced by the voltage ap-
plication is decreased at a critical concentration of the toner par-
ticles in the chain. This condition causes a reduction in the Cou-
lomb force applied to the top of the chain and improves the bead-
carry-out phenomenon. Quantitative characteristics of these fea-
tures have also been elucidated by a numerical simulation. Some 
countermeasures against this phenomenon were also proposed 
based on the experiment and calculation. 

Introduction 
Although there are several types of development subsystems 

in electrophotography, such as the magnetic single-component de-
velopment subsystem, two-component magnetic brush develop-
ment subsystem, and nonmagnetic single-component development 
subsystem, a two-component development process is most widely 
used in high-speed and/or color laser printers because it provides 
high image quality and high reliability. A schematic drawing of 
this system is shown in Fig. 1. Magnetized carrier beads form 
chain clusters on a rotating sleeve in the magnetic field generated 
by a stationary permanent magnet. Toner particles electrostatically 
attached to the magnetic bead chains are transported to the devel-
opment zone by the rotation of the sleeve. In the development 
area, an electrostatic force acts on the toner particles and they 

move to electrostatic latent images on the photoreceptor surface to 
form real images.[1][2] 

The electrostatic force acts not only on the toner particles but 
also on the carrier chains, and therefore, carrier bead(s) sometimes 
separate from the chains and move to the photoreceptor surface if 
the electrostatic force exceeds the magnetic force. This phenome-
non is widely known as "bead-carry-out" (BCO) or "carrier devel-
opment." Because the carrier beads attached to the photoreceptor 
surface cause significant image defects, it is important to clarify a 
mechanism and the requirements to prevent BCO. Williams first 
introduced this phenomenon and provided basic information in his 
textbook.[1] Nakayama et al. carried out a model experiment and 
numerical study and they confirmed that BCO occurs when the 
electrostatic force is larger than the magnetic force.[3] However, 
they did not consider the existence of the toner particles, although 
the toner particle concentration is one of the most important para-
meters of BCO. No practical study has been published on this sub-
ject after the report of Nakayama at al., although there has been a 
well-accepted consensus in the electrophotography community that 
BCO is one of the most serious issues in the two-component mag-
netic brush development system. 

In this study, experimental and numerical investigations have 
been carried out on the BCO phenomenon to clarify the mechan-
ism and effects of parameters such as the bead diameter, toner par-
ticle concentration, and development voltage. We have observed 
the phenomenon with a high-speed CCD camera; number density 
of the adhered carrier particles was measured and effects of the 
carrier particle diameter, toner particle concentration, and electros-
tatic field were evaluated.  
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Figure 1. Schematic drawing of two-component magnetic brush develop-
ment system in electrophotography (left) and photograph of magnetic brush-
es in the development area (right). 
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Experimental 
Figure 2 shows a schematic drawing of the experimental se-

tup to observe the dynamic characteristics of the BCO phenome-
non in the development area. A mock-up machine was used for the 
experiment instead of a commercial printer. The mock-up machine 
comprises a photoreceptor drum, a developer, and driving systems. 
The drum is not coated with a photoconductive film; however, an 
aluminum drum with an insulative coating of polypropylene 
(thickness: 40 µm, relative permittivity: 2.2) is used because high-
intensity light must be used to observe the toner motion in the de-
velopment area with a high-speed microscope camera. The diame-
ters of the drum and development sleeve are 100 mm and 25 mm, 
respectively, and the gap between the drum and the sleeve is 400 
µm. The rotational speeds of the drum and development sleeve are 
29 rpm and 218 rpm, respectively. The magnetic flux density gen-
erated by the magnetic roller in the development sleeve is reported 
in reference [4]. The DC development voltage was applied be-
tween the drum and the sleeve. The AC voltage was not super-
posed on the DC voltage. The dynamic behavior of the toner and 
carrier particles at the development area was observed at the right 
end of the development gap by the high-speed microscope camera 
(Photron, Fastcam-Max 120K model 1) with a frame speed of 
4,000 fps and a shutter speed of 0.25 ms. 

Spherical-shaped soft magnetic carrier particles and nonmag-
netic toner particles provided by Samsung Yokohama Research In-
stitute were used for experiments. The magnetic carrier particles 
comprised soft ferrite with average diameters of 40, 50, and 60 µm 
and a volume density of 2,200 kg/m3. On the other hand, the toner 
particles are yellow pigmented with an average diameter of 8.5 µm 
averaged and a density of 1,200 kg/m3. Figure 3 shows SEM pho-
tographs of both the carrier and toner particles. 
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Figure 2. Experimental setup to observe the dynamic behavior of carrier and 
toner particles in the development area with the high-speed microscope 
camera. 

 (a) carrier particles (60 µm)   (b) toner particles (8.5 µm)     (c) carrier and toner particles 
                                                                   (12 wt% toner)  

Figure 3. SEM photographs of carrier particles, toner particles, and mixture 
of both particles. 
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Figure 4. Example of bead-carry-out. 

  500 µm 

    (a) 500 V DC                   (b) 600 V DC               (c) 700 V DC 
 

Figure 5. Examples of photographs of the drum surface taken after the de-
velopment process (diameter of carrier particles: 40 µm, toner particle con-
centration: 6 wt%). 

Observation of BCO Phenomenon 
Carrier chains were formed by virtue of the magnetic field 

generated by the magnetic roller. At the inlet of the development 
zone, chains leaned to the sleeve and these get up gradually when 
chains approached to the development gap, because carrier chains 
were formed almost parallel to the magnetic flux line. The magnet-
ic roller was designed in such a manner that the magnetic flux line 
is almost normal to the roller at the center of the development gap; 
however, this flux line is inclined at the inlet and outlet of the de-
velopment area, as reported in a previous report [4]. When the 
chains approached the nip, the carrier chains came into contact 
with the photoreceptor drum and depressed. Chains slipped to the 
drum and swept the drum under this condition. The slip speed is 
low before the chains reach the center of the development gap, and 
the slip speed coincides with the relative speed of the photorecep-
tor drum and the sleeve (0.135 m/s) only at the center; subsequent-
ly, it becomes higher than the relative speed at the exit of the de-
velopment area. Finally, the chains become suddenly free. At this 
moment, a spring back of the chains occurs and the top particle(s) 
in the chain occasionally separate from the chain and adhere to the 
photoreceptor drum, thereby giving rise to BCO. An example of 
the BCO phenomenon is shown in Fig. 4. BCO is likely to occur in 
long and thin chains.  

Number Density of Adhered Carrier Particles  
Photographs of the drum surface were taken after the devel-

opment process, and the number of carrier particles adhering to the 
drum was counted by performing image data processing. Figure 5 
shows some example photographs. 

Figures 6 (a), (c), and (e) shows plots of the number density 
of the adhered carrier particles against the applied DC voltage. The 
diameter of the carrier particles and the concentration of the toner 
particles were selected as the parameters to be studied. The results 
indicated the following characteristics. (1) A threshold voltage ex-
ists for the occurrence of the BCO phenomenon. (2) The threshold 
voltage is low when the carrier particles are small and the toner 
particle concentration is low. (3) The number density of the ad-
hered carrier particles is high for small carrier particles and it in-
creases with an increase in the applied voltage. (4) The number 
density of the adhered carrier particles is drastically increased 
when the toner particle concentration is lower than 6−9 wt%. 
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(a) BCO density (40 µm carrier particles)  (b) resistivity (40 µm carrier particles) 

 (e) BCO density (60 µm carrier particles)  (f) resistivity (60 µm carrier particles) 

 (c) BCO density (50 µm carrier particles)  (d) resistivity (50 µm carrier particles) 
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Figure 6. Number density of adhered carrier particles on the photoreceptor 
drum (left) and the effective resistivity of a mixture of both carrier and toner 
particles (right). Confirm that the maximums of the ordinates in (c) and (e) 
are 50% and 15% of that of (a), respectively.  

Discussion 
The charge distribution in the chain is related to the depen-

dence of the number density of the adhered carrier particles on the 
toner particle concentration. Figure 7 shows a conceptual drawing  
of this phenomenon. Because the carrier particles are conductive 
and the toner particles are insulative, the latter disturbs the elec-
trical conduction in the chain; hence the electrical charge at the top 
of the chain, induced by the voltage application, is decreased when 
the concentration of the toner particles in the chain is larger than 
the threshold. This condition causes a reduction in the Coulomb 
force applied to the top of the chain and improves the BCO phe-
nomenon.  

The resistivity of a mixture of the carrier and toner particles 
was measured to support the hypothesis. The measured values are 
plotted in Figs. 6 (b), (d), and (f). The effective resistivity is grad-
ually increased with the toner particle concentration; however, it is 
drastically increased at the critical concentration of 9−7 wt% that 
coincides with the toner particle concentration so that the number 
density of the adhered carrier particles is drastically increased. 

A numerical calculation was performed to confirm that the in-
sulative toner particles affect the distribution of charge density. 
The charge and potential distributions in the chain can be calcu-
lated by the following Poisson's equation (2) and the conservation 
equation of charge (3):  
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Figure 7. Photograph of chains to which the toner particles adhered and 
conceptual drawing of charge distributions in the chains that contain rare and 
sufficient number of toner particles. 
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Figure 8. Calculation conditions: configuration and dimensions of the calcu-
lation domain and meshes to simulate the presence of toner particles. 
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Figure 9. Distributions of steady-state potential and charge density in con-
ductive carrier chain with and without insulative toner particles. 

( )ε φ ρ−∇ ∇ =  , (2) 

( )
t

ρ σ φ∂− =∇ ⋅ − ∇
∂

 , (3) 

where φ is the electric potential; ρ, the charge density; ε, the per-
mittivity; and σ, the conductivity. A two-dimensional rectangular 
chain, as shown in Fig. 8 (a), was assumed and the presence of 
toner particles was simulated by assuming the presence of highly 
resistive meshes between the toner particles, as shown in Fig. 8 
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(b). The toner particles were randomly distributed and the total 
number of toner particles was varied accordingly to the toner par-
ticle concentration. 

Figure 9 shows the distributions for the steady-state potential 
and charge density calculated by the finite element method. It is 
clearly observed that without the toner particles, the electrical 
charge is concentrated at the top of the chain; however, if a suffi-
cient number of toner particles are mixed in the chain, the charge 
in the chain is decreased and the charge density at the top of the 
chain also decreases. 

Concluding Remarks 
In this study, the BCO phenomenon in the two-component 

brush development system of electrophotography was investigated 
and the following characteristics have been clarified: 

(1) At the outlet of the development area, after the carrier chains 
become suddenly free from the photoreceptor drum, the par-
ticle(s) at the top of the chain occasionally separate from the 
chain and adhere to the photoreceptor drum. This BCO phe-
nomenon is likely to occur in long and thin chains. 

(2) There is threshold voltage for the occurrence of BCO because 
BCO is caused when the electrostatic force applied to the top 
of the carrier chain is larger than the magnetic force. The 
threshold voltage is low when the carrier particles are small 
and the toner particle concentration is low. 

(3) The number density of the adhered carrier particles is high for 
the small carrier particles and it increases with the applied 
voltage. It is drastically increased when the toner particle 
concentration is lower than 6−9 wt%. Because the insulative 
toner particles disturb the electrical conduction in the chain, 
the electrical charge at the top of the chain induced by the 
voltage application is decreased above the critical concentra-

tion of toner particles in the chain. This decrease in the elec-
trical charge causes a reduction in the Coulomb force applied 
to the top of the chain, and the BCO phenomenon is im-
proved. 
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